

UNIVERSITE D'ANTANANARIVO

ECOLE SUPERIEURE POLYTECHNIQUE D'ANTANANARIVO DEPARTEMENT METEOROLOGIE

Mémoire de fin d'étude en vue de l'obtention du diplôme de Master en Météorologie

Grade: Master

Titre: Ingénieur

Parcours:

« Engineering du développement durable et des changements climatiques »

EVALUATION DE LA POTENTIALITE DES RESSOURCES EN EAU FACE AU DYNAMISME DE CLIMAT DU LAC ALAOTRA

Présenté par :

ANDRIAMBELOMASINASOLO Loyandrainy Ratovoarisoa

Directeur de mémoire : Dr RAHARIVELOARIMIZA Samuëline, Directeur Général de la Météorologie

Soutenu publiquement le 25 Août 2015

UNIVERSITE D'ANTANANARIVO

ECOLE SUPERIEURE POLYTECHNIQUE D'ANTANANARIVO DEPARTEMENT METEOROLOGIE

Mémoire de fin d'étude en vue de l'obtention du diplôme de Master en Météorologie

Grade: Master

Titre: Ingénieur

Parcours:

« Engineering du développement durable et des changements climatiques »

EVALUATION DE LA POTENTIALITE DES RESSOURCES EN EAU FACE AU DYNAMISME DE CLIMAT DU LAC ALAOTRA

Soutenu publiquement le 25 Août 2015

Par: ANDRIAMBELOMASINASOLO Lovandrainy Ratovoarisoa

Devant les membres du jury :

Président: M. RAKOTOVAZAHA Olivier, Chef de Département de la filière Météorologie

Examinateurs:

- M. RANDRIANASOLO Léon, Enseignant chercheur au département Météorologie
- M. RATSIHOARANA Constant, Enseignant chercheur à l'École Supérieure
 Polytechnique d'Antananariyo
- M. RAMANAKOTO Toky, Enseignant chercheur au département Météorologie

<u>Directeur de mémoire</u>: Mme RAHARIVELQARIMIZA Samuëline, Directeur Général de la Météorologie

REMERCIEMENTS

Malgré les différents types de difficultés qu'on a rencontrées, l'élaboration de ce présent mémoire n'aurait été réalisée sans la bienveillance de notre Seigneur, l'autorisation de l'Ecole Supérieure Polytechnique d'Antananarivo

Notre SEIGNEUR tout puissant qui nous a aidés beaucoup, en nous donnant la connaissance et la santé ;

Il n'aurait pu aussi voir le jour, sans le soutien infaillible de plusieurs personnes à qui j'exprime ma profonde reconnaissance et mes sincères remerciements. En particulier:

Monsieur le Professeur **ANDRIANARY Philipe Antoine**, Directeur de l'ESPA, qui a contribué à notre formation durant les années que nous avons passée à l'école;

Monsieur **RAKOTOVAZAHA Olivier**, Maître de conférences à l'Ecole Supérieure Polytechnique d'Antananarivo, Chef de Département de la filière Météorologie de m'avoir laissé suivre les formations au sein du département et qui nous fait l'honneur de présider cette soutenance.

Monsieur **RANDRIANASOLO Léon**, Enseignant chercheur au département Météorologie, d'avoir consacré son temps et ses expériences pour me conseiller et qui a bien voulu juger ce travail;

Monsieur **RATSIHOARANA Constant**, Enseignant Chercheur à l'École Supérieure Polytechnique d' Antananarivo, pour l'honneur que vous nous avez fait d'avoir bien voulu juger ce travail;

Monsieur **RAMANAKOTO Toky**, Enseignant chercheur au département Météorologie pour avoir répondu spontanément à notre sollicitude de faire partie des rapporteurs.

Madame **RAHARIVELOARIMIZA Samueline**, Directeur Général de la Météorologie, malgré ses lourdes responsabilités au sein de la Direction Générale et du pays qui a accepté et accompli avec rigueur le rôle d'encadreur pour l'élaboration de ce mémoire.

Ma famille qui a veillé sur moi, m'a encouragé et m'a soutenu moralement et matériellement dans mon parcours d'études;

Mes amis qui m'ont encouragé et participé à l'élaboration de ce travail.

SOMMAIRE

REMERCIEMENTS

SOMMAIRE

LISTE DES ABRIVIATIONS

LISTE DES FIGURES

LISTE DES TABLEAUX

INTRODUCTION

PARTIE I: GENERALITES

CHAPITRE I. DYNAMISME DE CLIMAT

CHAPITRE II. DELIMITATION ET REPRESENTATION DE LA ZONE D'ETUDE

CHAPITRE III. CARACTERISTIQUE PHYSIQUE DE LA ZONE D'ETUDE

CHAPITRE IV. SOCIO-ECONOMIQUE

PARTIE II: METHODEOLOGIE ET TRAITEMENT DE DONNEE CLIMATIQUE

CHAPITRE V: METHODE DE DESCENTE D'ECHELLE

CHAPITRE VI: CALCUL DES APPORTS DES 18 RIVIERES ALIMENTANT LE LAC

ALAOTRA

CHAPITRE VII: CALCUL DE BESOIN EN EAU

PARTIE III: RESULTAT ET INTERPRETATION

CHAPITRE VIII: PRESENTATION DU RESULTAT PAR LA METHODE ADVANCED

DELTA CHANGE (ADC)

CHAPITRE IX: RESULTAT DES APPORTS PAR LES DEUX METHODES

CHAPITRE X: ADEQUATION DES RESSOURCES DISPONIBLE ET DES BESOINS

CONCLUSIONS

BIBLIOGRAPHIE ET WEBOGRAPHIE

ANNEXES

TABLE DES MATIERES

LISTE DES ABRIVIATIONS

%: pourcent

°C : degré Celsius

ADC: Advanced Delta Change

AEP: Adduction d'Eau Potable

AFD : Agence Française pour le Développement

Amtozaka: Ambatondrazaka

AUE: Association des Usagers de l'Eau

BV: Bassin versant

CHD 2 : Centre hospitalier de district avec chirurgie.

CHD1: Centre hospitalier de district pas de chirurgie,

CIREL : Circonscription Inter-Régionale de l'Elevage

CREAM: Centre de Recherches, d'Etudes et d'Appui

à l'analyse Economique à Madagascar

CSB 1 : Centre de santé de base avec paramédical,

CSB 2 : Centre de santé de base avec médecin,

dfc: débit fictif continu

DGM : Direction Générale de la Météorologie

ETP: Evapotranspiration

GES: gaz à effet de serre

GIEC : Groupe d'experts intergouvernemental sur l'évolution du climat

MAEP : Ministère de l'Agriculture, de l'Elevage et de la Pêche

MCG: Modèles de Circulation Générale

PC : Périmètre de Colonisation ou actuellement Périmètre de Culture

RCP: Representativ Concentration Pathway

RN: Route nationale

SCCC : Service De La Climatologie Et De Changement Climatique

SRI : Système de Riziculture Intensive

TAN: Taux d'Accroissement Naturel

TCE: Tananarive Côte Est

LISTE DES FIGURES

Figure 1: Origine de gaz à effet de serre4
Figure 2: Trajectoire des températures en fonction des émissions mondiales de GES5
Figure 3: Localisation de la zone d'étude7
Figure 4: Délimitation du BV Alaotra8
Figure 5:Occupation du sol13
Figure 6: Localisation des périmètres a irrigué
Figure 7: Évolution des températures moyenne mensuelle pour le futur proche (2021-
2050) selon le scenario d'émission RCP 4.5 (à gauche) et selon le scenario RCP 8.5 (à
droit) par rapport aux observés 1981-2010 pour la station d'Ambohitsilaozana44
Figure 8: Évolution des températures moyenne mensuelle pour le futur lointain (2271-
2100) selon le scenario d'émission RCP 4.5 (à gauche) et selon le scenario RCP 8.5 (à
droit) par rapport aux observés 1981-2010 pour la station d'Ambohitsilaozana45
Figure 9: Évolution des précipitations moyenne mensuelle pour le futur proche (2021-
2050) selon le scenario d'émission RCP 4.5 (à gauche) et selon le scenario RCP 8.5 (à
droit) par rapport aux observés 1981-2010 pour la station d'Ambohitsilaozana47
Figure 10: Évolution des précipitations moyenne mensuelle pour le futur lointain (2071-
2100) selon le scenario d'émission RCP 4.5 (à gauche) et selon le scenario RCP 8.5 (à
droit) par rapport aux observés 1981-2010 pour la station d'Ambohitsilaozana48

LISTE DES TABLEAUX

Tableau 1: Correspondance entre districts et bassins versants10
Tableau 2: Evolution de la superficie de la couverture forestière par district (2000-2005)
12
Tableau 3: Répartition des précipitations en mm dans le bassin de l'Alaotra15
Tableau 4: Structure de la population dans les 3 districts concernés. 17
Tableau 6: Nombre d'établissement scolaire public et privé 20
Tableau 7: Accès aux infrastructures sanitaires
Tableau 8: Production annuelle par cheptel24
Tableau 9: Les débits spécifiques de différentes fréquences
Tableau 10: Caractéristiques respectives des sous bassins versants. 31
Tableau 11: coefficient de répartition mensuelle des apports. 32
Tableau 12: Associations des usagers de l'eau / adduction d'eau33
Tableau 13:Etat des bassins versants pour l'irrigation 35
Tableau 14: Calendrier cultural
Tableau 15: Valeurs du coefficient cultural pour le riz à cycle long39
Tableau 16: Résultats de calcul du dfc pour le bassin de l'Alaotra40
Tableau 17: Taux d'accroissement naturel 40
Tableau 18: Nombre de population estime en 2025 par district
Tableau 19: Evolution des apports moyenne annuels selon la différente fréquence par
les deux méthodes pour le scenario RCP 4.5 par rapport aux apports des ressources
observé51
Tableau 20: Evolution des apports moyenne annuels selon la différente fréquence par
les deux méthodes pour le scenario RCP 8.5 par rapport aux apports des ressources
observé52
Tableau 21: Evolution des apports moyenne annuels selon la différente fréquence par
les deux méthodes pour le scenario RCP 4.5 par rapport aux apports des ressources
observé54
Tableau 22: Evolution des apports moyenne annuels selon la différente fréquence par
les deux méthodes pour le scenario RCP8.5 par rapport aux apports des ressources
observé55

Tableau 35 : Adéquation en année quinquennal sèche pour une projection de 50 ans des
besoins(2065) selon la moyenne de deux méthodes pour le scenario d'émission RCP 4.5
72
Tableau 36: Adéquation en année quinquennal sèche pour une projection de 50 ans des
besoins(2065) selon la moyenne de deux méthodes pour le scenario d'émission RCP 8.5
73
Tableau 37: Adéquation en année quinquennal sèche pour une projection de 85 ans des
besoins(en 2100) selon la moyenne de deux méthodes pour le scenario d'émission RCP
4.574
Tableau 38: Adéquation en année quinquennal sèche pour une projection de 85 ans des
besoins(en 2100) selon la moyenne de deux méthodes pour le scenario d'émission RCP
8.575

INTRODUCTION

Actuellement, nombreuses organisations ne cessent d'informer et de donner des explications sur le dynamisme climatique, ses impacts sur la vie humaine et l'évolution future de notre planète. Vue le déficit d'eau dans quelques zones continentales et l'augmentation de niveau de la mer depuis quelques années qui sont considérés déjà comme les effets de ce changement, il est nécessaire à faire des études concernant la potentialité de source en eau face à ce problème.

La cuvette du lac Alaotra est l'une des plus grandes zones rizicoles de Madagascar, avec une production annuelle en année normale de 200 000 tonnes en paddy, dont 80 000 tonnes en moyenne sont évacuées chaque année entre les deux marchés de consommation des plus importantes : Antananarivo et Toamasina. Quelques études ont montré que la région du lac Alaotra en certaine périodes de l'année, surtout en étiage a un problème de sècheresse qui influe sur toutes les composantes de l'environnement, dont les ressources en eau.

Ce pourquoi, nous l'avons intéressé à choisir comme site d'étude.

L'objectif principal est d'évaluer si les ressources sont suffisantes et jusqu'à quand le seront-elles face à ce changement.

Pour mettre en œuvre notre travail, nous allons rédiger comme suit :

- -Dans la première partie, la généralité
- -En seconde partie, les méthodologies et traitement de la donnée,
- -En troisième et dernière partie, sera la présentation et l'interprétation des résultats qui permettront de conclure sur les quantités des ressources encore utilisables et sur détermination de l'année où elles ne seront plus suffisantes

PARTIE I GENERALITES

CHAPITRE I. DYNAMISME DE CLIMAT

I.1. DEFINITION

Selon le Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC) [1].

I.1.1. Le dynamisme du climat

C'est la variation de l'état du climat que nous pouvons déceler (par exemple au moyen de tests statistiques) par des modifications de la moyenne et/ou de la variabilité de ses propriétés et qui persiste pendant une longue période, généralement pendant des décennies ou plus. Ils peuvent être dus à des processus interne ou à des forçages externes, notamment les modulations des cycles solaires, les éruptions volcaniques ou des changements anthropiques persistants dans la composition de l'atmosphère ou dans l'utilisation des terres.

I.1.2. Le gaz à effet de serre

Les Gaz à Effet de Serre (GES) sont des gaz qui absorbent une partie des rayons solaires en les redistribuant sous la forme de radiations au sein de l'atmosphère terrestre, phénomène appelé effet de serre. L'augmentation de leur concentration dans l'atmosphère terrestre est à l'origine du réchauffement climatique.

Voici quelques exemples des gaz à effet de serre (GES) naturel : La vapeur d'eau (H₂O), le dioxyde de carbone (CO₂), l'ozone (O₃), méthane (CH₄).Ce sont le principaux gaz à effet de serre présent dans l'atmosphère terrestre.

I.1.3. L'effet de serre

Ce sont des gaz qui absorbent efficacement le rayonnement infrarouge thermique émis par la surface de la Terre par l'atmosphère elle-même en raison de la présence de ces gaz et par les nuages. Le rayonnement atmosphérique est émis dans toutes les directions, y compris vers la surface de la Terre. Par conséquent, les gaz à effet de serre (GES) retiennent la chaleur dans le système surface-troposphère.

I.2.LES CAUSES NATURELLES ET ANTHROPIQUES DU RECHAUFFEMENT CLIMATIQUE

Les variations climatiques sont à la base d'origine climatique et dépendent d'un grand nombre de facteurs : les paramètres orbitaux (position de la Terre par rapport au soleil, à la lune, son inclinaison...), l'activité solaire et les corps d'origine extraterrestre, le volcanisme, la tectonique des plaques, les courants océaniques et bien sûr l'effet de serre. Tous ces facteurs, en interaction les uns avec les autres ou non, sont à l'origine du changement climatique de la Terre, provoquant une alternance d'épisodes froids ou chauds plus ou moins durables.

Précédemment citée, l'effet de serre est effectivement un phénomène naturel qui permet à la Terre de garder une température positive permettant la vie, mais la question qui se pose aujourd'hui est : « L'activité humaine participe-t-elle au changement climatique dû à l'amplification de l'effet de serre ? ».

Depuis une dizaine d'années, l'utilisation massive des énergies fossiles a contribué à une augmentation importante de l'émission des gaz à effet de serre et donc à un réchauffement du climat. De nombreux secteurs comme l'industrie, l'agriculture, le transport ou encore les activités ménagères (chauffage) sont responsables de ces émissions de gaz de différentes natures (dioxyde de carbone, méthane, ozone...) ayant des contributions différentes à l'effet de serre.

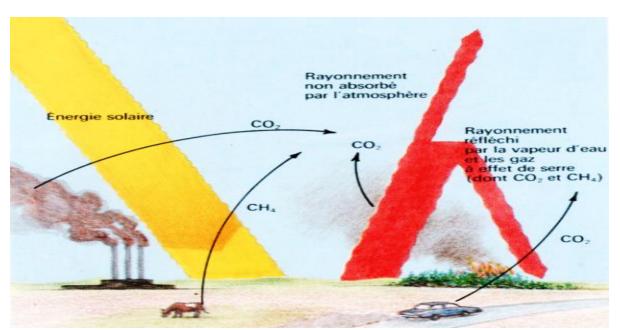
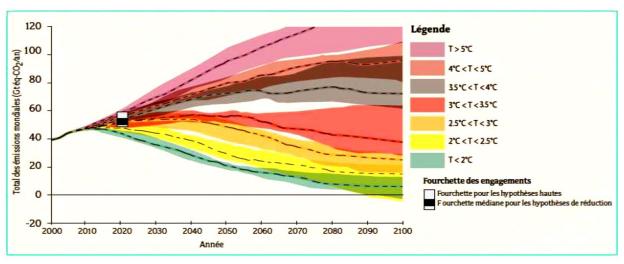


Figure 1: Origine de gaz à effet de serre


Source: www.alertes-meteo.com

La concentration de ces gaz à effet de serre dans l'atmosphère a augmenté depuis l'ère préindustrielle, et surtout depuis 1960 [2]. Et dans l'effet de serre additionnel ou d'origine anthropique, le CO2 contribue majoritairement à l'effet de serre, suivi des CFC qui sont déjà connus pour détruire la couche d'ozone.

Aujourd'hui, les émissions anthropiques du seul CO2 sont estimées entre 6 et 8 milliards de tonnes équivalent carbone par an (soit entre 22 et 30 milliards de tonnes de CO2) et sont responsables de 55 % de l'effet de serre additionnel, dans une proportion croissante.

I.3. DYNAMISME CLIMATIQUE ET L'EAU

Le système climatique, le système d'eau douce et les systèmes biophysiques et socioéconomiques sont liés de manière complexe. Ainsi, toute modification de l'un de ces facteurs peut induire un changement de n'importe lequel des autres. Les problèmes associés à l'eau douce sont critiques pour la détermination des principales vulnérabilités par région et par domaine. C'est pourquoi la relation entre le dynamisme climatique et les ressources en eau douce est d'un intérêt capital pour les sociétés humaines. Elle présente également des implications pour les secteurs de l'agriculture et la pêche puisque les températures et les précipitations sont des facteurs déterminants pour la croissance des cultures, le développement des parasites et donc le volume des récoltes, tandis que la température est le facteur critique de la reproduction et de l'alimentation des espèces halieutiques.

Figure 2 : Trajectoire des températures en fonction des émissions mondiales de GES Source : PNUE, 2011,2012 et RAC

Cela a des conséquences immédiates sur le revenu des agriculteurs, des répercussions sur la variabilité des prix des marchés locaux, souvent déconnectés des marchés internationaux. Selon le Rapport de développement dans le monde de 2010 de la Banque mondiale, qui comprend une synthèse des nombreuses études et recherches sur le sujet, les rendements agricoles dans les pays en voie de développement pourraient décroître de plus de 20 % d'ici 2050 dans un scénario où les émissions de CO2 continuent à augmenter au rythme actuel.

Grâce à l'utilisation de sources d'énergies fossiles (charbon, pétrole, gaz, etc.), conduit à une augmentation des concentrations de GES et fait peser un risque de modifications climatiques majeures.

CHAPITRE II. DELIMITATION ET REPRESENTATION DE LA ZONE D'ETUDE

II.1. PRESENTATION DE LA ZONE D'ETUDE [3]

Le lac Alaotra est, dans la dépression appelée « Cuvette Sihanaka », situé au Nord-est de Tananarive (à 150km à vol d'oiseau). Il fait partir de la région Alaotra Mangoro, plus précisément à 17° 28' de latitude Sud et 48° 30' de longitude. Est qui représente 8% de la superficie de Madagascar. La suivante figure de la page 7 montres la localisation de la zone d'étude.

Compte tenu de l'hétérogénéité de la zone, tant géographique qu'administrative, et du fait même de l'étude, nous avons choisi de définir la « zone du lac Alaotra» par une délimitation hydrologique, celle de son **bassin versant**.

Cette définition est la plus satisfaisante du double point de vue des activités socioéconomiques et de l'environnement, ainsi que de leurs nombreuses interactions souvent conflictuelles érosion des hauts bassins versants par déforestation, empiètement des cultures sur les marais où vivent les lémuriens lacustres, etc. Son bassin versant a une superficie de 6980 km² avec un périmètre de 514 km.

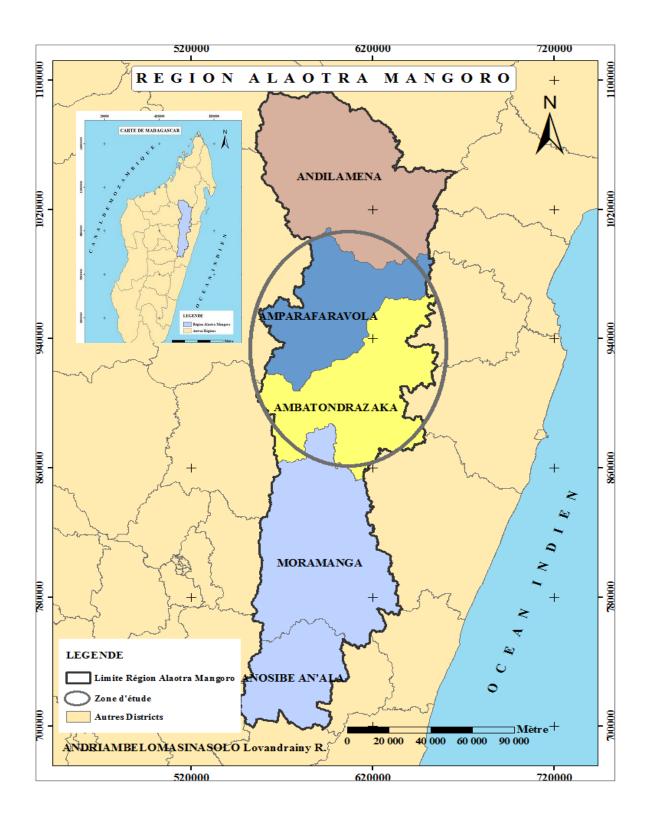


Figure 3: Localisation de la zone d'étude

Source: BD100 FTM, Réalisation: l'auteur 2015

II.2. DELIMITATION DU BASSIN VERSANT

Les coordonnées géographiques du grand bassin versant du lac Alaotra, suivant la projection : Longitude/Latitude WGS 84, sont les suivantes :

- extrémité Nord: 48° 22' 52" Est ; 16° 59' 06" Sud,

-extrémité Sud: 48° 01' 30" Est ; 18° 14' 42" Sud,

- extrémité Est: 48° 47' 17" Est ; 17° 27' 22" Sud,

-extrémité Ouest: 47° 49' 41" Est ; 17° 45' 54" Sud

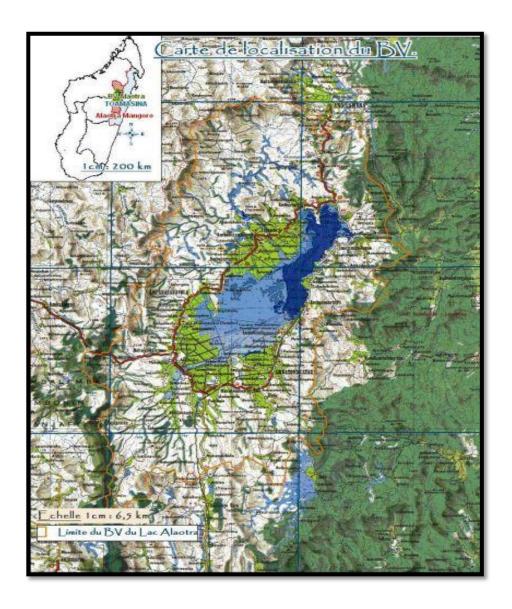


Figure 4: Délimitation du BV Alaotra

Source: http://madagascar.cirad.fr

Le lac Alaotra, situé à une altitude 750 m. Elle est entouré d'une zone marécageuse à tourbe flottante et papyrus de près d'un millier de kilomètres.

Géométriquement, le lac Alaotra est un grand lac dont sa longueur environ de 40 km et a de largeur varie entre 3 et 8 Km. Sa profondeur varie de 0,6 à 2 m et l'eau y est fortement chargée de sédiments à cause de l'érosion intense de ses bassins versants.

II.3. PRESENTATION DES SOUS BASSINS VERSANTS

II.3.1. Inventaire des sous bassins versants [3]

Les principaux cours d'eau du bassin du lac Alaotra (d'après l'étude NEYRPIC "hydrologique du lac Alaotra"-Tome II) sont : Amboavory, Sahabe, Anony, Ranofotsy, Sahamaloto, Lohafasika, Sahamamy, Lakana, Sasomangana, Imamba, Mangozozoro, Bemarenina, Manamontana, Sahamena, Andrangorona, Sahamilahy, Lovoka, Ivakaka.

Il existe une partie du Grand bassin versant où les eaux sont directement drainées par le lac Alaotra, cette partie est dénommée « reste du BV » dans la suite du mémoire.

II.3.2. Découpage administratif

Administrativement, cette zone est regroupée dans les districts: d'Ambatondrazaka, d'Amparafaravola, d'Andilamena. On considère traditionnellement que la « zone du lac Alaotra » empiète, mais sans les englober entièrement, sur ces trois districts: Ambatondrazaka à l'Est et au Sud du lac, Amparafaravola à l'Ouest et Andilamena au Nord.

II.3.3. Relation entre le district et le bassin versant

Tableau 1: Correspondance entre districts et bassins versants.

		En km²			En %	
District	BV	Hors BV	Total	BV	Hors BV	Total
Ambatondrazaka	3051	2852	5903	52	48	100
Amparafaravola	3469	366	3835	90	10	100
Andilamena	393	7133	7526	5	95	100

<u>Source</u> : Etude de faisabilité d'un projet de mise en valeur et de protection des BV au lac Alaotra, Contexte général des 2 zones d'étude, Génie Rural et AFD.

Ainsi, bien qu'Amparafaravola soit le plus petit des trois districts du lac Alaotra, c'est lui qui occupe la plus grande partie du bassin versant (3 469 km², soit très exactement 50%). Ambatondrazaka en constitue pratiquement tout le reste (3 051 km², soit 44%), tandis que la partie relevant d'Andilamena est minime (366km², soit 6%).

CHAPITRE III. CARACTERISTIQUES PHYSIQUE DE LA ZONE D'ETUDE [3][4]

III.1. RELIEF

Le relief est surtout caractérisé par la cuvette de l'Alaotra qui est un vaste plateau intermédiaire, situé au milieu des plateaux de la région centrale de Madagascar avec une altitude moyenne de 750 m. Des massifs latéritiques forment les abords aux bassins versants, lesquels couvrent une superficie de 7000 km² environ.

Au pied de l'Angavo, la cuvette de l'Alaotra correspond à un fossé tectonique de direction N.20°E conjugué avec le rejet de mouvements N.20°O responsables de la formation des cuvettes annexes d'Andilamena et de Didy. La cuvette de l'Alaotra est remblayée par des sédiments lacustres pléistocènes qui sont des débris organiques ou minéraux qui apporté par l'érosion et s'installe dans le lac à l'ère. Ils forment des buttes résiduelles culminant entre 800 et 970m. Dans la cuvette, une vaste dépression à fond plat s'étend sur une superficie approximative de 1 800 km² (long de 70 km et large de 30 km environ).

III.2. TYPE DE SOL

Les sols dans la région du lac Alaotra sont de type ferralitique. Ils sont bien homogènes sur l'ensemble du point de vue de leurs caractéristiques physiques. Sur les bas-fonds et les thalwegs de la cuvette centrale, le sol est hydromorphe c'est à dire sol présentant des résultats visibles de l'engorgement antérieur et soumis à un excès d'eau

-sols hydromorphes moyennement organiques, à texture très argileuse fine, aptes à la riziculture,

- sols hydromorphes tourbeux ayant une aptitude bonne à moyenne pour la riziculture inondée, moyenne pour l'agriculture de contre-saison sans irrigation.

III.3. GEOLOGIE DU BASSIN VERSANT

La cuvette de l'Alaotra est constituée par cinq formations lithologiques :

-alluvions récentes et anciennes ;

-migmatites;

-gneiss;

-migmatites granitoïdes;

-et granites migmatitiques

L'histoire géologique du bassin présente plusieurs phases mais la plus récente est marquée par un comblement de la cuvette dû à une érosion intense favorisée par la suppression récente du couvert forestier et entraînant une très importante formation de ravins.

La région du lac Alaotra, qui s'intègre à la bordure Nord-Orientale des Hautes Terres de Madagascar, est le siège d'une érosion intense dite en lavaka. Le processus de "lavakisation", qui génère des faciès érosifs spectaculaires sur les altérités issues de roches quartzeuses, bouleverse profondément les paysages (ROUGERIE, 1965; RAUNET, 1984). Il donne lieu à une redistribution des matériaux depuis les bassins versants vers la cuvette lacustre, théâtre d'une importante activité rizicole.

III.4. COUVERTURE VEGETALES

La couverture végétale diffère du Nord au Sud et de l'Est à l'Ouest où on passe de la savane herbeuse et des végétations lacustres vers les forêts naturelles du corridor Est.Zone Nord au niveau de la cuvette Alaotra et d'Andilamena.

Trois groupes de formations végétales caractérisent cette zone :

- la prairie qui constitue la plus grande partie des bassins versants de l'Alaotra et de la zone d'Andilamena avec une prairie à graminées (bozaka) ou à buissons et fougères sur sols siliceux

-la végétation des sols alluviaux marécageux constituée essentiellement de «zozoro» aux alentours des plans d'eau comme le grand lac.

-la forêt ombrophile à sous-bois herbacé représentée surtout dans la partie Sud-Est du bassin. Sur les hauts plateaux, cette forêt a généralement été détruite par les feux de brousse et a laissé place à la prairie à bozaka.

L'occupation du sol dans notre zone d'étude est montrée par la figure 5 qui suit

Tableau 2: Evolution de la superficie de la couverture forestière par district (2000-2005)

Types de forêts	Année	Ambatondrazaka	Amparafaravola	Andilamena	Total (effectif)
Forêts	2000	146 208	16 727	66 174	229 109
denses humides	2005	136 404	15 804	63 015	215 223
Forêts	2000	5 295	35	29	5 359
dégradées	dégradées 2005		43	446	5 785
Peuplement	2000	147	2	57	206
d'eucalyptus	2005	147	2	57	206
Peuplement	2000	3 643	169	407	4 219
de pins	2005	3 430	169	407	4 006

Source: ONE : Résultats de traitement d'image satellite (2000 et 2005)

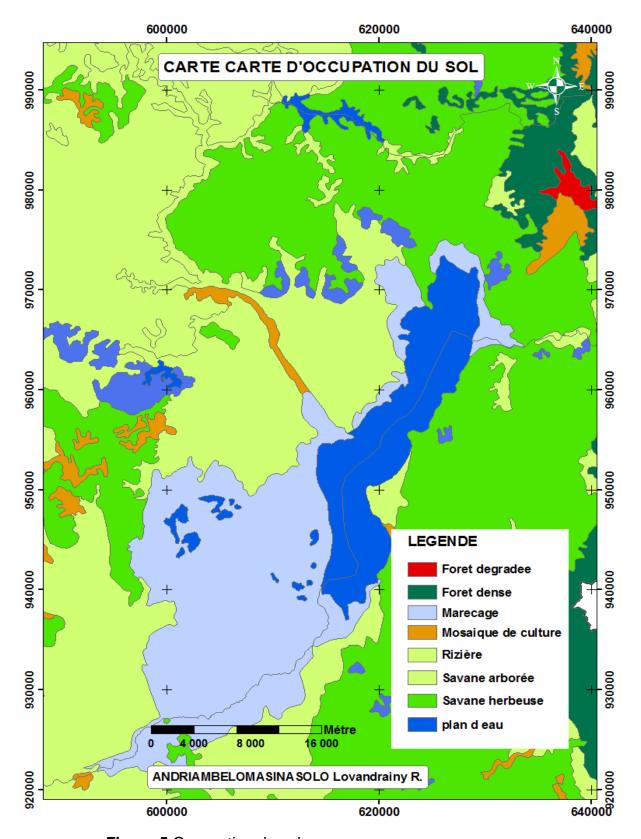


Figure 5:Occupation du sol

Source : BD100, réalisation : l'auteur 2015

III.5. CLIMATOLOGIE

III.5.1. Température [5]

La cuvette du lac Alaotra constitue une enclave climatique de type tropical semihumide de moyenne altitude avec une température moyenne de 21 à 22 °C et comporte deux saisons bien marquées :

- Saison fraîche et sèche avec pluies fines : Mois d'Avril au mois de Septembre ;
- -Saison chaude et pluvieuse : octobre à mars.

III.5.2. Pluviométrie [5]

Cette zone subie souvent des sécheresses et les besoins en eau pour les cultures ne sont pas satisfaits, que lors des passages des dépressions tropicales.

La pluviométrie moyenne de la cuvette du lac Alaotra est de 1 092 mm à 1 200 mm et 100 jours de pluie par an.

Toutefois, les premières pluies du mois d'octobre sont souvent suivies d'une période sèche de 20 à 30 jours, préjudiciables aux cultures et entraînant une forte pression sur le lac par de pêches exagérées.

III.5.3. Inondation [4]

A cause de l'érosion suivie de l'ensablement du Lac Alaotra, on observe des inondations presque tous les ans au moment de la saison pluvieuse et envahit les rizières environnantes d'où la nécessité de procéder à sa régulation au niveau de son exutoire. Ces phénomènes entraînent la destruction des rizières et des habitations, l'ensablement des terrains de cultures et l'anéantissement des cultures.

III.5.4. Cyclone [4]

La période de janvier à mars est la plus exposée aux cyclones. Malgré les risques d'inondation engendrés par le passage des dépressions tropicales, ce sont ces dernières qui arrivent parfois à satisfaire les besoins en eau

Tableau 3: Répartition des précipitations en mm dans le bassin de l'Alaotra

STATIONS		J	F	M	Α	M	J	J	Α	S	0	N	D	Total Annuel
Andilamena	Р	249,3	199,6	148,8	37,6	13,1	11,4	12,3	13,2	7,1	16,9	100,8	182,2	992,3
16°55'S-48°43'E	N	15	13	12	6	3	5	6	6	6	4	7	11	94
Ambatosoratra	Р	263,4	175,1	204,4	20,6	7,7	7,2		2,2	6,9	8,7	87,9	141,3	928,9
17°35'S-48°34'E	N	15	12	14	4	2	3	2	3	2	2	7	10	76
Ambohitsilaozana	Р	307,4	264,6	205,6	36,1	10,1	8,1	9,8	7,0	3,4	19,8	92,4	210,7	1175,0
17°43'S-48°28'E	N	17	16	17	7	6	6	8	5	4	5	10	13	114
ManakambahinyE	Р	222,6	200,3	214,0	48,7	22,9	30,8	31,0	28,5	20,5	23,5	87,2	144,8	1074,8
17°46'S-48°40'E	N	17	17	17	11	12	14	15	16	12	9	12	14	166
Ambatondrazaka	Р	228,3	191,6	170,9	49,0	4,2	8,3	13,9	13,5	2,5	18,0	148,1	242,9	1091,2
17°49'S-48°25'E	N	14	12	12	5	2	3	4	3	1	3	10	16	85
Andilanatoby	Р	369,5	200,2	234,4	43,3	10,5	8,6	7,8	13,6	12,6	29,5	153,4	258,9	1342,3
18°01'S-48°13'E	N	17	14	14	6	3	4	5	5	3	5	10	17	103

Source: Donque G. 1975 – Contribution géographique à l'étude du climat de Madagascar

N : Nombre de jour pluie

P : La quantité de pluie moyenne mensuelle

III.5.5. Sècheresse [4]

La situation à mi- pente sur la falaise orientale, le bassin de l'Alaotra, constituée par trois cuvettes : Andilamena au nord, Alaotra au centre et Didy au sud, appartient climatiquement au domaine sous le vent de l'alizé. Il est caractérisé par la faiblesse des précipitations, l'importance de la saison sèche et l'irrégularité des pluies d'une année à l'autre. La période sèche s'étalant sur 6 à 7 mois (avril – septembre) est très marquée et pendant laquelle les précipitations sous forme de pluies fines ou bruines sont rares (<10 mm/mois). Les premières orages surviennent généralement en octobre, début de la saison pluvieuse qui se prolonge jusqu'en mars ou avril selon les années.

III.6. REGIME HYDROLOGIQUE [3]

Le régime hydrologique suit étroitement celui du régime pluviométrique et ceci est accentué par la faiblesse ou la disparition de la couverture végétale des versants. Les eaux à régime torrentiel, qui arrivent par les cours d'eau, se déversent en excédent dans le lac. En période cyclonique son exutoire est insuffisant du fait de la présence d'un seuil rocheux sur le Maningory.

Le lac et les marais qui l'entourent jouent un certain rôle de tampon. Mais le défrichement du marais et le comblement par les sédiments de la partie libre du lac sont une menace pour l'équilibre hydraulique du niveau de la nappe qui conditionne une production agricole en contre saison et qui évite les remontées du lac en cas de cyclone. En saison sèche la faible capacité de rétention et de stockage des eaux sur les bassins versants produit des débits d'étiage des rivières très faibles ou nul

CHAPITRE IV. SOCIO-ECONOMIQUE

IV.1. MILIEU HUMAIN ET SOCIAL [4]

IV.1.1. Répartition de la population

La population de la Région Alaotra Mangoro avoisine 1 175 581 habitants en 2009. La région abrite ainsi 4,8% de la population de Madagascar. Cette part est légèrement supérieure à la moyenne nationale de 4,5%.

La répartition par district de la population dans notre zone d'étude est donnée par le tableau suivant.

Tableau 4: Structure de la population dans les 3 districts concernés.

District	Population (effectif)	Population (%)
Ambatondrazaka	340 918	29
Amparafaravola	306 827	26,1
Andilamena	110505	9,4

Sources: MEI/CREAM/Monographie 2009

Ambatondrazaka est le district le plus peuplé avec un pourcentage de 29% dont 340 918 habitants celle de la région, suivi d'Amparafaravola, avec 306 827 habitants (représente 26,1% de la population total d'Alaotra Mangoro). Le district le moins peuplé est Andilamena dans la mesure où 9,4% de la population de la région s'y trouve.

IV.1.2. Croissance démographique et densité

Sous les hypothèses que les conditions démographiques, économiques et sociales restent inchangées, une femme âgée de 15 à 49 ans de la Région Alaotra aura 5 enfants au cours de sa vie en moyenne.

IV.1.3. Composition ethnique

Le Plan Régional de Développement de la région décrit la composition ethnique de la Région Alaotra Mangoro. Ainsi, les Sihanaka constituent la plus grande majorité de la population de la région, suivie de très loin des Merina. Les Betsimisaraka viennent en troisième position avant les Betsileo et les Antandroy. Le reste est composé de groupes minoritaires venant du reste de l'Île. Sa position géographique attribue à la population de la région, un caractère cosmopolite. On distingue trois groupes différents au sein de l'ethnie Sihanaka :

- les Tamoronala qui habitent près des forêts et dont les traits ressemblent beaucoup plus aux Betsimisaraka
- les Tetivohitra, habitant des collines et dont les traits et les habitudes s'apparentent à ceux des Merina ;
- les Tanaroro qui exercent au bord du lac Alaotra le métier de pasteurs venant des Tsimihety et Sakalava.

Historiquement, au temps de la colonisation, les ethnies comme les Sakalava, les Antemoro et les Betsileo immigraient dans la région et occupaient une montagne couverte de « Voangy » ou orange et qui est aussi encerclée d'une eau infestée de caïmans formant ainsi une sorte d'îlot. Ce fut l'origine du peuplement de la région et l'ethnie « Tanosimboangy ». Ensuite la population s'était multipliée et occupait de montagnes beaucoup plus vastes et rocheuses qu'elle appelait «Ambatoharanana». La multiplication de la population continuait ainsi que ses déplacements, notamment sur les montagnes appelées «Andilamena» dont le nom provenait de la chaîne de montagnes dentelées de cinq vallées rouges de sol latéritique (vallée : Andilana ; rouge : mena).

IV.1.4. Mouvements migratoires

Les mouvements migratoires de la population sont principalement dictés par des objectifs de recherche de conditions de vie meilleures, surtout économiques, mais également sociales. Ces mouvements sont notamment motivés et facilités par la disponibilité entre autres dans le milieu de destination, des services administratifs, des infrastructures de tous genres: communication, culturels, économiques etc., des opportunités et potentialités économiques et la sécurité. Les impacts des mouvements migratoires dans le milieu d'accueil peuvent être de deux natures opposées. D'une part, les immigrants apportent généralement de la main d'œuvre, de la technologie, de l'innovation dans les domaines économiques et sociaux, bref, le développement et d'autre part, la localité d'accueil subira à terme des pressions démographiques et environnementales. Ainsi, à partir du moment où la croissance économique escomptée serait inférieure à la croissance démographique, beaucoup de problèmes

surgiraient: dégradation de l'environnement, paupérisation de la population, insécurité etc.

IV.1.4.1. Migration interne

La migration interne est faible dans la Région Alaotra Mangoro dans la mesure où 50 communes sur 79 enregistrent une migration interne faible. Pour notre zone d'étude, 5 communes sur 33 seulement feraient l'objet d'une forte migration interne, se trouvent dans le district d'Amparafaravola. Un peu moins d'une commune sur quatre en moyenne dans la région, est jugée à moyenne migration interne. La majorité de ces communes se trouvent dans les districts d'Amparafaravola et d'Andilamena.

Le tableau suivant montre le nombre des communes par district selon l'importance de la migration.

Tableau 5: Nombre des communes par district selon l'importance de la migration (effectif)

District	Forte	Moyenne	Faible	total
Ambatondrzaka	0	0	20	20
Amparafaravola	5	11	4	20
Andilamena	0	8	0	8
Total	5	19	24	48

Source: MEI/CREAM/Monographie 2009

IV.1.4.2. Immigration

L'immigration se fait en premier lieu dans les communes du même district. La deuxième provenance des immigrants est confirmée, par les réponses recueillies, être les districts de la même région. Enfin, le troisième lieu de provenance des immigrants serait les autres régions de la province

La principale raison qui motive l'immigration dans la Région Alaotra Mangoro est l'émergence d'un pôle de travail. Cette raison concerne 18 communes et est justifiée par l'installation du grand projet minier Sherrit dans la région

IV.1.4.3. Emigration

La principale cause de cette émigration est le manque d'opportunité locale d'emploi. La période de soudure pousse la population à émigrer vers d'autres localités.

IV.2. ACTIVITES ET INFRASTRUCTURES PRESENTES DANS LA ZONE D'ETUDE [4]

IV.2.1. Education

Evolution du nombre d'établissements scolaires publics et privés par district

Tableau 6: Nombre d'établissement scolaire public et privé

District	Année	Niveau I		Niveau II		Niveau III	
District	scolaire	Public	Privé	Public	Privé	Public	Privé
Ambatondrazaka	2003-2004	212	35	14	12	1	6
7 iii batoilai azaita	2006-2007	240	57	19	12	1	5
Amparafaravola	2003-2004	216	39	14	5	1	1
	2006-2007	216	47	18	18	1	3
Andilamena	2003-2004	56	6	4		1	0
Allanamona	2006-2007	56	6	3	1	1	0

<u>Source</u> : MEI/CREAM/Monographie 2009 Part de la région par rapport au niveau national

Le niveau d'instruction de la population de plus de 4 ans dans la Région Alaotra est relativement élevé par rapport à celui du national. En effet, la proportion des individus sans instruction y est de 28,4% si cet indicateur est de 37,0% pour l'ensemble du pays.

Les personnes qui ont un niveau primaire représentent 58,2%, alors qu'elles représentent 51,3 % pour Madagascar. La proportion de la population qui a atteint le niveau secondaire est de 10,6 % contre 9,6 % pour le pays. La proportion d'individus ayant fréquenté les établissements supérieurs dans la tranche d'âge de population de plus de 4 ans dans cette zone dépasse de 0,7 points celle de l'ensemble de Madagascar si ces 2 indicateurs sont respectivement de 2,8% et 2,1%.

En ce qui concerne l'alphabétisation, le niveau est également élevé par rapport à celui de l'ensemble du pays. Cette situation est valable aussi bien en milieu rural qu'en milieu urbain et pour les hommes que pour les femmes. Ainsi, 80,8% de la population de la tranche d'âge de plus de 15 ans sont alphabétisées dans cette région. Alors que pour Madagascar, cette proportion est de 71,4%.

La différence est beaucoup plus constatée au niveau du genre et en milieu rural. En effet, 80,2% de la population féminine de la région est alphabétisée contre 68% seulement pour Madagascar. De même, 79,5% de la population rurale est alphabétisée dans cette région contre 67,8% dans l'ensemble du pays.

IV.2.2. Santé

Les hôpitaux sont situés au niveau des chefs-lieux des District. Et la région dispose beaucoup plus de CSB II que de CSB I. Ces centres de santé sont faiblement équipés et les personnels de santé sont encore insuffisants.

Tableau 7: Accès aux infrastructures sanitaires

District	CSB 1	CSB 2	CHD1	CHD2	Soin dentaire
Ambatondrazaka	24	20	0	0	2
Amparafaravola	11	19	1	0	3
Andilamena	8	8	0	1	1
Total	43	47	1	1	6

Source: MEI/CREAM/Monographie 2009

CSB 1 : Centre de santé de base avec paramédical,

CSB 2 : Centre de santé de base avec médecin,

CHD1: Centre hospitalier de district pas de chirurgie,

CHD 2 : Centre hospitalier de district avec chirurgie.

IV.2.3. Les infrastructures de communication

IV.2.3.1. Réseau routier

Le lac Alaotra est desservi par la route nationale 44 (RN 44) et par le rail (le MLA ou Moramanga - Lac Alaotra), rejoignant respectivement la route nationale 2 (RN 2) et la ligne TCE (Tananarive - Côte Est) à l'Ouest.

En 1999, une initiative de la Faritany d'Antananarivo et la Direction des Travaux Publics a permis l'ouverture de l'axe Anjozorobe - Vohidiala longue de 100 km. Les autres RN desservant la région sont le RN 33 (partant de Morarano Chrome vers l'Ouest de l'Ile) et le RN 3a sur la rive gauche du Lac (reliant Vohidiala, Amparafaravola jusqu'à Anony).

Des pistes adjacentes à ces routes nationales desservent la zone sur 780 km. Malgré ce nombre considérable d'accès routier, la région est pénalisée par le mauvais état de la RN 44. C'est la plus importante voie carrelle relie la région à la RN 2 et donc à la Capitale. Les produits locaux coûtent alors chers à acheminer vers les centres urbains. Le goudronnage de cette route permettra des échanges commerciaux, bénéfiques aussi bien pour cette région grande productrice en riz que pour Antananarivo.

IV.2.3.2. Chemin de fer

Le rail reste le principal moyen de transport des biens et des personnes pour communiquer vers le, ou à partir du lac. Mais, faute de locomotive en nombre suffisant, la fréquence entre Antananarivo - Ambatondrazaka n'est que de trois aller-retour par semaine. Ceci s'explique par le fait que pour exporter le minerai de chrome extrait du lac (Morarano Chrome), le choix ait été fait en saison sèche du transport par camion vers un port de L'Ouest, à Mahajanga.

IV.2.3.3. Liaisons aériennes

Le bassin versant Alaotra compte cinq pistes d'atterrissage en herbe, dont la principale est celle d'Ambatondrazaka. Celle-ci est la seule bénéficiant de liaisons régulières avec Antananarivo (et Toamasina), mais uniquement pour le transport des personnes: 2 liaisons par semaine, par petit porteur (TwinOtter par Air Madagascar).

IV.2.4. Agriculture

IV.2.4.1. Structure des superficies physiques

D'après l'enquête monographique réalisée par le CREAM en 2009 dans la Région Alaotra Mangoro, il existe 170 182 ha de superficies cultivables dont 118 839 ha, soit 69,83 % sont cultivées. Cette proportion de terrains cultivés dans la région par rapport à ceux cultivables dépasse largement celle de Madagascar qui est de 51,7 %.

Les districts ayant les proportions de surfaces cultivées par rapport aux surfaces cultivables sont Amparafaravola et Ambatondrazaka avec des valeurs respectives de 87,1 % et 82,9 %. Ce sont en effet les districts les plus grands cultivateurs de riz de la région.

IV.2.4.2. Riziculture

La Région Alaotra Mangoro est l'un des plus importants greniers à riz de Madagascar. L'analyse de la riziculture mérite donc d'être mise en exergue dans le présent document de monographie à travers la production rizicole.

Les cultivateurs dans la Région Alaotra Mangoro, cultivent 3 types de riz : le riz irrigué; le riz sur tanety et le riz de contre saison. Pour l'année 2010, 86,6 % de la superficie rizicole développé de la région sont affectée s à la riziculture irriguée.

Les productions par rapport à ces 3 types de riziculture sont respectivement de 477 650 tonnes, 57 656 tonnes et 18 608 tonnes. Les rendements sont à peu près les mêmes pour la riziculture irriguée et la riziculture de contre saison, soit respectivement de 3,5 tonnes/ ha et 3,4 tonnes/ha. Ce rendement est un peu moindre pour la riziculture sur « tanety » avec une valeur de 2,70 tonnes/ha.

Les districts d'Ambatondrazaka et d'Amparafaravola sont les plus grands producteurs de riz avec une production totale de 377.900 tonnes pour le riz irrigué, représentant 79,1 % de la production de riz irrigué de l'ensemble de la région. La production en riz de contre saison de ces deux districts ensembles constitue 92,3 % de la production totale en ce type de riz en 2010.

IV.2.5. Elevage

La région Alaotra Mangoro présente un potentiel d'élevage avec une nette prédominance de l'élevage de bovin. Elle possède deux Circonscriptions d'élevage mais comme notre zone d'étude est bien prédéterminé, nous ne parlons ainsi que de la CIREL d'Ambatondrazaka: elle couvre les districts d'Ambatondrazaka, d'Amparafaravola et d'Andilamena.

L'effectif de cheptel par spéculation en termes d'élevage est résumé dans le tableau suivant :

Tableau 8: Production annuelle par cheptel

District	Bovin	Porcin	Ovin/Caprin	Volaille
Ambatondrazaka	79 741 11 153 7 3		7 317	299 635
Amparafaravola	72 848	2 181	625	233 215
Andilamena	64 332	800	10	352 511
Total	216 921	14 134	7 952	885 361

Source: Rapport annuel Circonscription d'élevage 2003 – PCD

L'élevage bovin se présente sous trois formes d'exploitation :

-Au nord, dans le district d'Andilamena et à l'Ouest d'Amparafaravola, il s'agit d'élevage extensif, de faible productivité. C'est une zone de passage qui fournit la plaine d'Ambatondrazaka en animaux de trait.

-Au centre, dans la plaine du Lac Alaotra, la partie sud du district d'Amparafaravola et du district d'Ambatondrazaka, l'élevage est surtout destiné à la traction animale requise pour la riziculture sur quelques 40 000 ha. L'effectif du cheptel est ainsi lié aux variations des surfaces rizicoles et non à la densité de population. Les animaux sont mis en pâture dans les rizières en contresaison.

PARTIE II METHODOLOGIE ET TRAITEMENT DE DONNEES CLIMATIQUES

CHAPITRE V: METHODE DE DESCENTE D'ECHELLE

V.1. CHOIX DE L'UTILISATION DE LA METHODE

Plusieurs modèles climatiques globaux (MCG) sont utilisés sur la base de différents scénarios d'émission aujourd'hui d'une façon de produire des projections climatiques tout en permettant de mesurer l'incertitude dans les scénarios d'émission, les modèles en eux-mêmes ou les conditions initiales (Knutti et Sedláček, 2013). Si les projections issues de modèles différents s'accordent entre elles, alors la confiance associée à ces résultats augmente, si au contraire, les résultats varient largement entre les différents groupes, alors l'incertitude est importante. Mais la résolution des MCG est souvent de quelques centaines de kilomètres.

Cependant, afin d'étudier correctement les variations de flux hydrologiques à l'échelle du bassin versant, une résolution plus fine est nécessaire et pour que la projection représente l'évolution du climat de notre station de base, il est nécessaire d'effectuer d'abord une descente d'échelle. Dans ce travail, après une revue bibliographique, nous introduirons la méthode de descente d'échelle employée, l'Advanced Delta Change, pour régionaliser les scénarios climatiques issus de plusieurs MCG mis en place pour le dernier rapport du GIEC

V.2. LA METHODE ADVANCED DELTA CHANGE (ADC) [6][7]

L'ADC est une amélioration de la méthode Delta Change, elle repose sur une transformation de séries de données climatiques passées permettant d'obtenir des séries de données représentatives du climat futur. En effet, la méthode classique «Delta Change» est basée sur une transformation linéaire des précipitations moyennes et des températures, ce qui entraînait une distribution peu réaliste des précipitations en comparaison avec les changements se produisant dans les modèles climatiques (Kraaijenbrink, 2013a). C'est pourquoi Van Pelt [7] a développé la méthode dite «Advanced Delta Change», permettant d'améliorer la qualité de la modélisation des évènements extrêmes en utilisant une transformation non-linéaire basée sur les quantiles 60% et 90%. Les coefficients nécessaires à cette transformation sont obtenus à partir de modèles climatiques globaux.

Cependant, comme énoncé auparavant, les données historiques et celles issues des modèles climatiques sont souvent présentes sur des échelles spatiales très

différentes, il est donc nécessaire d'établir un lien entre les deux échelles. La méthode ADC n'agit pas directement sur les valeurs journalières, mais sur les sommes sur 5 jours. Deux équations différentes sont utilisées, pour les précipitations inférieures ou supérieures au quantile 90% (P_{90})

$$P^* = aP^b$$
 pour $P^0 < P_{90}^0$ (1)

$$P^* = \overline{E^F} /_{\overline{E^C}} \cdot (P^0 - P_{90}^0) + a(P^0)^b \quad \text{pour } P^0 > P_{90}^0$$
 (2)

Avec P* les sommes transformées, P les valeurs observées, P₉₀ le quantile 90% et a et b les coefficients de transformation. Les superscripts ^O, ^C et ^F dénotent si celles-ci sont des valeurs appartenant respectivement à la série observée, la période de contrôle et les données futures.

Pour les sommes de précipitations excédant le quantile P_{90} mensuel, une valeur d'«excès » E est déterminée par $E = P - P_{90}$. La valeur moyenne traduisant l'excès est calculée pour la période de contrôle et la période future suivant les équations :

$$\overline{E^C} = \frac{\sum P^C - P^C 90}{n^C} \tag{3}$$

Εt

$$\overline{E^F} = \frac{\sum P^F - P^F 90}{n^F} \tag{4}$$

Avec n le nombre de sommes sur 5 jours. Les coefficients de transformation et a et b, dérivés des quantiles P_{90} et P_{60} sont calculés comme suit :

$$a = P_{60}^F / (P_{60}^F)^b \cdot g_1^{1-b} \tag{5}$$

$$b = \frac{\log\{g_2, P_{90}^F/(g_1, P_{60}^F) \}}{\log\{g_2, P_{90}^F/(g_1, P_{60}^F) \}}$$

Et g1 et g2 des facteurs de correction

$$g_1 = P_{60}^0 / P_{60}^c$$
 et $g_2 = P_{90}^0 / P_{90}^c$ (6)

Pour les températures la transformation est linéaire, sous la forme :

$$T^* = \frac{\sigma^F}{\sigma^C} \left(T - \overline{T^O} \right) + \overline{T^O} + \overline{T^F} - \overline{T^C}$$
 (7)

Avec T* les températures transformées, T les températures observées et les \bar{T} représentes les valeurs moyennes de température σ^C et σ^F représentent les écarts-types des températures journalières calculées par mois. Les écarts-type sont calculés pour chaque maille par agrégation des valeurs observées suivie d'une interpolation bilinéaire.

Pour mettre cette méthode en application, nous avons utilisé le logiciel R (R Development Core Team, 2008). L'application informatique de la méthode ADC est composée essentiellement de deux étapes. La première est la détermination des coefficients permettant d'obtenir les prévisions, et la seconde et l'application de ces coefficients aux plages de données historiques.

V.3. PRESENTATION DES DONNEES UTILISEES

Pour l'exécution de la méthode ADC nous avons pris la donnée observée dans station pluviométrique d'Ambohitsilaozana car c'est la seule station pluviométrique à avoir les données non seulement plus récentes mais aussi complètes et fiables. D'ailleurs, elle se situe nettement à l'intérieur de la limite de la zone d'étude. Ces données ont été obtenues auprès de la « SERVICE DE LA CLIMATOLOGIE ET DE CHANGEMENT CLIMATIQUE (SCCC) » à la Direction Générale de la Météorologie (DGM) Ampandrinomby Tananarive.

Les données historiques et celles de projection sont issues des 5 modèles globaux qui sont les suivants : CCCma-CanESM2, ICHEC-EC-EARTH, MIROC-MIROC5, MPI-M-MPI-ESM-LR, NCC-NorESM1-M.

L'ADC permet d'obtenir des projections climatiques à l'horizon de: 2021-2050 pour le futur proche et 2071-2100 pour le futur lointain pour les 2 scenarios d'émission RCP 4.5 et RCP 8.5.

- RCP 4.5 : un scénario de stabilisation où le forçage radiatif se stabilise avant
 2100 grâce à la mise en application de politiques et technologies de réduction de gaz à effet de serre
- RCP 8.5 : un scénario où l'émission de gaz à effet de serre augmente en fonction du temps atteignant ainsi de très fortes concentrations

CHAPITRE VI : CALCUL DES APPORTS DES 18 RIVIERES ALIMENTANT LE LAC ALAOTRA

VI.1. METHODE DE STATION DE REFERENCE

La méthode des stations de référence consiste à :

-identifier la station hydrométrique ayant une longue série d'observation

-effectuer l'étude statistique aux données enregistrées à cette station. Les données à recueillir sont les débits moyens annuels. Elles seront exploitées pour déterminer les débits des différentes fréquences (5, 10, 50,100 ans) par ajustement suivant les lois de distribution telles les lois de GAUSS et GALTON. On choisira le moins mauvais des ajustements. On déterminera pour les différentes fréquences susmentionnées les débits spécifiques **qs** en connaissant la superficie du bassin versant dominant la station hydrométrique étudiée.

-multiplier ces débits spécifiques par les superficies des bassins versants dominant les ouvrages étudiés pour avoir les débits moyens annuels *Qa*.

D'où, l'apport moyen annuel en l/s associé au bassin considéré est donné par

$$Q_a = q_s. S_{bv} \tag{8}$$

Dans laquelle.

qs Débit spécifique de la station de référence en l/s/ha.

 S_{BV} : superficie du bassin versant considéré en km^2

Dans ces cas, La seule station de mesure où les données sont complètes et où le débit spécifique est donné par le livre « Fleuves et Rivières de Madagascar » est la station de la Maningory à Andromba. La plupart des autres stations sont d'un étalonnage délicat en raison des très nombreux ouvrages de dérivation mis en place. De plus, les années de mesure sont insuffisantes pour déterminer les débits spécifiques de différentes fréquences. Nous allons donc prendre cette station comme station de référence

Le tableau suivant donne les lames, modules et débits spécifiques de différentes périodes de retour :

Tableau 9: Les débits spécifiques de différentes fréquences.

	An	Années sèches				Aı	Années humides			
Récurrence	50	20	10	5	2	5	10	20	50	
Lames (mm)	103	139	175	222	328	459	540	613	705	
Modules (m³/s)	22,2	30,2	38,0	48,2	71,2	99,7	117	133	153	
q.spécifique(l/s/ha)	3,2	4,4	5,5	7,0	10,4	14,5	17,1	19,4	22,3	

Source: Fleuves et Rivières de Madagascar.

VI.2. METHODE DE CTGREF

La méthode CTGREF est une méthode empirique basée sur la formule :

$$Q_a = \frac{S_{bv}}{31.5} \left(\frac{P}{B}\right)^{\frac{5}{3}} \cdot \left(\frac{Z_m}{100}\right)^{\frac{1}{3}}$$
 (9)

Dans laquelle:

Qa: Apport moyen annuel en l/s

P: Pluviométrie annuelle pour une même période de retour T en mm,

B: Paramètre régional = 47

Zm: Altitude moyenne du bassin versant en m.

Le tableau suivant donc nous montre les superficies des 18 principales rivières et donc le sous bassins versants :

Tableau 10: Caractéristiques respectives des sous bassins versants.

	Superficie de leur BV en km²	Périmètre en km	pente en m/m	
Lakana	266,0	106,6	0,009	
BV Am ^{to} zaka Ville	133,3	52,1	0,016	
Manamontana	91,8	43,7	0,038	
Anony	1548,3	191,0	0,004	
Andrangorona	116,0	46,2	0,018	
Lovoka	221,2	74,0	0,019	
Ampandranovy	37,5	27,7	0,028	
Sasomangana/Harave	290,0	93,2	0,015	
Sahamilahy	228,1	74,6	0,019	
Sahabe	1045,0	188,5	0,007	
Ranofotsy/Lohafasika	330,8	81,0	0,013	
Ambatoharanana	37,1	25,1	0,012	
Imamba	81,4	42,5	0,018	
Ivakaka	188,3	73,7	0,015	
Bemarenina	40,6	32,9	0,014	
Sahamaloto	335,6	102,5	0,009	
Amboavory	79,4	35,5	0,021	
Ampasimena	164,7	73,7	0,012	

Source: Planimétrage sur MAP Info.

Les calculs pour ces 2 méthodes et les caractéristiques de chaque BV sont explicités dans les annexes.

VI.3. REPARTITION MENSUELLE DES APPORTS

La répartition mensuelle s'obtient en appliquant les coefficients de répartition mensuelle et l'apport moyen annuel.

Elle est donnée donc par la formule :

$$Q_{mi} = \frac{Q_a.12.R_J}{100} \tag{10}$$

Avec, R_I C'est le coefficient de répartition mensuelle et donnée par le tableau suivant :

Tableau 11: coefficient de répartition mensuelle des apports.

Mois												
Rj	13,4	14,8	15,7	9,9	6,9	5,7	5,8	6,0	4,4	3,6	4,5	9,2

Source : Fleuves et Rivières de Madagascar.

VI.2. EVAPOTRANSPIRATION [4]

L'ETP est un facteur régional qui représente la quantité d'eau évapotranspirée par une culture de référence dans la région donnée .Plusieurs formules peuvent être utilisées pour estimer l'ETP.

Dans la région du lac Alaotra Les données répertoriées sur la valeur de l'évapotranspiration sont très rares. La valeur extraite de l'ouvrage de G. DONQUE (1975) donne une valeur annuelle de 1221 mm pour le Lac Alaotra. C'est pourquoi les naturalistes ont cherché dans l'arsenal des formules climatiques, celles qui, comparativement aux résultats des mesures, donnaient les meilleures approximations. Elle n'est évaluée qu'à partir des formules classiques (THORNWAITHE, PENMANN, TURC, etc.)

CHAPITRE VII: CALCUL DE BESOIN EN EAU

VII.1. INVENTAIRE DE RESSOURCE EN EAU UTILISE

VII.1.1. Utilisation en adduction d'eau potable (AEP)

La population de la région Alaotra prend des mesures institutionnelles pour la gestion durable de l'eau. Ces mesures consistent en la création d'association des usagers de l'eau(AUE) pour chaque réalisation en irrigation, ainsi que pour chaque adduction d'eau potable dans les Communes bénéficiant de ce mode d'approvisionnement.

Tableau 12: Associations des usagers de l'eau / adduction d'eau

District	Nombre des AUE	Nombre des membres
Ambatondrazaka	42	6 500
Amparafaravola	32	9 200
Andilamena	4	1 350

Source: Génie Rural Moramanga – Monographie de la région du Moyen Est-2003

VII.1.1.1. Pour le district d'Ambatondrazaka

Le district d'Ambatondrazaka est desservi par la JIRAMA (pour les villes rurales, le taux de raccordement au réseau est encore très faible). Les ressources utilisées dans la sous-préfecture sont surtout les différentes sources d'émergence.

VII.1.1.2. Pour le district d'Amparafaravola

Amparafaravola bénéficie d'installations effectuées par la "microréalisation" en 1989. Ces derniers sont surtout des puits munis de pompes. Dans les sous bassins d'Anony et d'Amboavory, l'adduction en eau potable est assurée par des captages de sous écoulement de la rivière Anony, et par les lacs qui sont nombreux dans ce sous bassin.

VII.1.1.3. Pour le district d'Andilamena

A Andilamena, l'eau des sources, assurant l'AEP est gérée par la Commune.

VII.1.2. Utilisation hydro agricole de l'eau

Les périmètres important à Irriguer dans le BV de l'Alaotra sont :

- les périmètres de rive Est : au Sud Est, la vallée Marianina et le PC 15 et au Nord Est, le périmètre d'Ankaifo.
- -Les périmètres de rive Ouest : Anony, Sahamaloto, Besomangana, Imamba Ivavaka. PC 23.

Les périmètres sont soit irrigués, soit dominants non irrigués. Les périmètres sont dits irrigués lorsqu'ils sont munis d'infrastructures : ouvrages de captages, ouvrages d'amenée ..ll existe une multitude d'autres périmètres dans la région, avec des modes d'alimentation en eau par les rivières, à l'aide soit de retenue, soit de dérivation.

La *figure 6* suivante montre la position de tous les périmètres irrigués, cité cidessus dans le bassin versant du lac Alaotra.

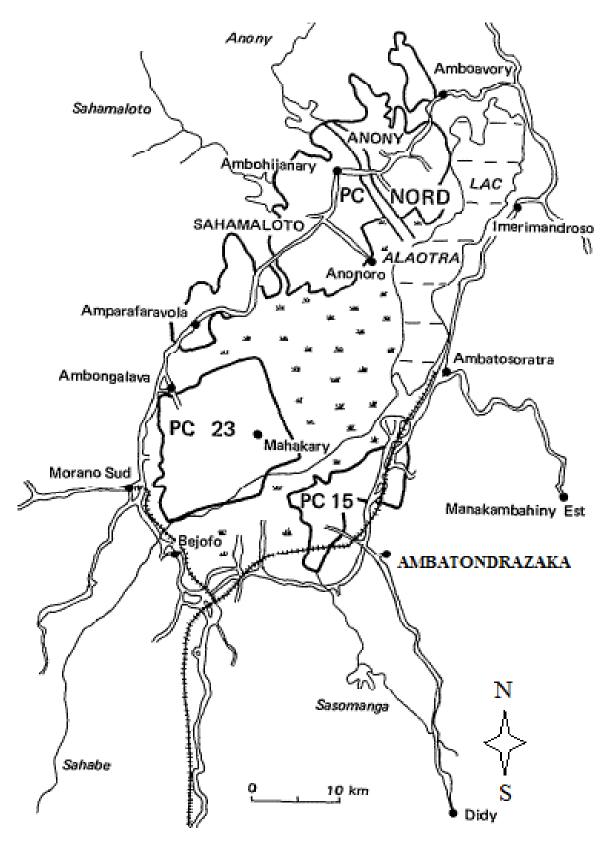


Figure 6: Localisation des périmètres a irrigué

Source: La SOMALA

Ce tableau résume le cas des chaque périmètres à irrigués et son caractéristique

Tableau 13:Etat des bassins versants pour l'irrigation

Périmètre	Nom rivière	Superficie dominée (ha)	Superficie irriguée (ha)	Caractéristiques des ressources
Vallée de Marianina	Bevava- Madioambany	4 000	3 653	Mode de captage : 2 barrages de retenues Ressources : suffisante
Imamba Ivavaka Bemarenina	Imamba- Ivavaka- Bemarenina	3 609	3 057	Mode de captage : dérivation Imamba : Insuffisant et vakaka -Bemarenina : Suffisante.
Sahamaloto	Sahamaloto	6 951	6 354	Mode de captage : Barrage de retenue. Ressource en Eau : Suffisante.
Anony	Anony	10 000	7 870	Mode de captage : Barrage de dérivation Ressource en Eau : Suffisante.
Ankaiafo	Ranofotsy	400	180	Mode de captage : Barrage de retenue Ressource en Eau : Suffisante.
Plaine Ambatondrazaka			1 173	Mode de captage : dérivation et barrage de retenue
PC 23	Sahabe-Sahamilahy-		10 625	Mode de captage : Dérivation Ressource en Eau : Suffisante.

Source: Monographie de la région du moyen Est UPDR - 2003

Le PC15 : ce « Périmètre de Colonisation » ou actuellement « Périmètre de Culture » achevé en 1960, se situe en aval de la Vallée Marianina.

VII.1.3. Problèmes rencontres dans la zone influant sur l'utilisation des ressources en eau

VII.1.3.1. Contraintes climatique

Bénéficiant d'un climat tropical de moyenne altitude, la saison de pluies, en période normale, s'étale sur 5 à 6 mois (novembre à mars) avec un total de précipitation de 1000 à 1200 mm d'eau par an. Malheureusement, on constate depuis ces dernières années que les pluies ont tendance à se concentrer pendant 3 mois seulement (décembre, janvier et février) avec des intensités horaires très élevées due à la variabilité climatique qui est déjà observé à Madagascar.

VII.1.3.2. Au niveau des bassins versants

Le problème ci-dessus provoque ainsi une érosion catastrophique des bassins versants du lac Alaotra (ravinement des collines avec phénomène de lavakisation). En outre, la zone est victime de temps à autre de vents cycloniques. Les pluies diluviennes provoquent une érosion intense des bassins versants, des quantités considérables de sédiments sont ainsi charriées par les eaux de ruissellement entraînant l'envasement du lac Alaotra et des peuplements de Zetra.

La dégradation des bassins versants et la lavakisation sont les principales sources d'ensablement et de perte en terre, phénomènes entraînant l'ensablement des bas-fonds et des zones de culture, notamment les rizières, ainsi que l'envasement des plans d'eau comme le lac Alaotra.

VII.1.3.3. Au niveau des périmètres irrigués

Les surfaces à maîtrise d'eau varient d'un district à un autre et ne dépassent pas 35% de la superficie dominée. La maîtrise d'eau est d'autant plus faible dans les périmètres n'ayant pas bénéficié des travaux de réhabilitation tels que les réseaux d'Andilamena et des périmètres en amont, où elle ne s'élève que 20% de la surface dominée.

La diminution de cette surface est constatée chaque année pour les raisons suivantes:

- les ressources en eau diminuent d'année en année à cause des tarissements des sources alimentant les barrages,
- les volumes du barrage diminuent à cause du degré d'ensablement élevé, d'où la régression continuelle de leur capacité d'irrigation.
- les canaux n'arrivent plus à faire transiter les débits nominaux, vu la réduction de leur section utile par l'envasement,
- la gestion et l'entretien, confiés aux AUE, ne sont pas satisfaisants, vu leurs capacités technique, et moyens matérielle et financière limités,
- la distribution de l'eau n'est pas optimale, étant donnée la faiblesse de l'organisation des usagers.

VII.1.3.4. Les contraintes environnementales

- Erosion des bassins versants et phénomène de « lavaka » entraînant l'ensablement des zones de culture et des réseaux hydro agricoles
- Envasement du Lac Alaotra et des bassins de retenue
- Dégradation des forêts (pratique du tavy ; feux de brousse ; exploitation forestière et minière galopante et hors norme).

VII.2. EVALUATION DES BESOINS EN EAU

VII.1.1. Besoin hydroagricole

VII.1.1.1. Superficie cultivée

La région du lac Alaotra compte environ 96 300 ha de superficie destinée à la culture du riz (dominante et irriguée). D'après le résultat donné par la Direction des Systèmes d'Information et Service des Statistiques Agricoles (MAEP) en 2006 la superficie des rizières irriguées est environ 72 918 ha.

VII.1.1.2. Variété et saison de culture

La principale variété cultivée est le Makalioka 34 à cycle long. Il existe également les :

- Vary jeby (riz jeby)
- Vary antanety (riz tanety)
- Tavy (riz tavy)

Dans la région du Lac Alaotra, il n'y a qu'une seule saison pour la culture du riz irriguée. Qui facilite notre étude car pour le calcul des besoins en eau en hydroagricole, nous ne considèrerons que les rizières irriguées pour la seule saison de culture.

Leur calendrier cultural est donné par le tableau suivant

Tableau 14: Calendrier cultural

Mois	Oct.	Nov.	Déc.	Janv.	Févr.	Mars	Avril	Mai
Semis								
Repiquage								
Entretien								
Récolte								

VII.1.1.3. Calcul des besoins en eau :

La connaissance de besoin en eau est l'un des éléments important pour l'étude d'un projet d'irrigation. Ces besoins en eau varient selon les cultures, le climat, le sol et la méthode d'arrosage pratiquée. Les besoins en eau d'irrigation B se composent des besoins en eau de la plante et les besoins en eau correspondant aux pratiques culturales.

Besoin en eau des plantes :

Les besoins en eau de la plante sont relatifs aux quantités d'eau perdues par évapotranspiration et qui ne sont pas comblées par la pluie.

$$B = k_c \cdot ETP - P_e \tag{11}$$

Où P_e : pluie efficace

 k_c : Coefficient cultural

ETP: évapotranspiration potentielle

La pluie efficace représente 80% de la pluie.

kc: Coefficient cultural, spécifique pour chaque plante et fonction du stade végétatif.

Le coefficient cultural kc varie, pour le riz, de 1,1à 0,8 du repiquage à la récolte

Les valeurs du coefficient cultural pour le riz à cycle long est illustré dans le tableau suivant:

Tableau 15: Valeurs du coefficient cultural pour le riz à cycle long

1 ^{er} mois	2 ^{ème} mois	3 ^{ème} mois	4 ^{ème} mois	5 ^{ème} mois	6 ^{ème} mois	
1,1	1,1	1,05	1,0	0,95	0,8	

❖ Besoin en eau pour le cycle de culture

Les besoins en eau correspondant aux pratiques culturales : La riziculture se fait par submersion, sa pratique exige les opérations suivantes :

- La mise en boue: effectuée avant le repiquage pour la saturation du profil, la quantité d'eau apportée varie suivant la nature pédologique du sol (100 à 200 mm) ;
- Le remplissage des clos: effectué après le repiquage pour avoir un plan d'eau uniforme dans la rizière, la quantité d'eau apportée varie suivant le mode de calcul (culture traditionnelle = 100 mm, SRI = 20 à 50 mm);
- L'assec: effectué avant et après le sarclage, la quantité d'eau apportée est égale à celle apportée pendant le remplissage des clos ;
- L'entretien: effectué après le sarclage jusqu'à la récolte, la quantité d'eau apportée est de 50 mm.

Efficience globale :

L'efficience est le rapport entre le volume d'eau réellement utilisé par le plante et celui fourni en tête de réseau. On a donc trois sortes d'efficience :

-l'efficience au réseau : différence entre le volume distribué en tête de réseau et le volume arrivé en fin de réseau, estimé à 0,7

-l'efficience à la parcelle : différence entre le volume d'eau arrivé à la parcelle et le volume réellement utilisé par la plante, estimé à 0,8

-l'efficience globale : le produit des deux efficiences précédentes, arrondie à 0,6

❖ Le débit fictif continu :

C'est le volume d'eau qu'on apporte à la culture d'une manière continue 24 heures sur 24, permettrait de satisfaire les besoins d'une période donnée pour la surface unitaire. Il est exprimé en l/s/ha:

$$dfc = \frac{Besoin mensuel.100}{3600.24.30} \tag{12}$$

Le débit fictif continu pour le bassin de l'Alaotra :

Tableau 16: Résultats de calcul du *dfc* pour le bassin de l'Alaotra

Mois	Nov.	Déc.	Janv.	Fév.	Mars	Avr.	Mai
<i>df c</i> (l/s/ha)	1,65	1,97	1,16	0,76	0,64	0,68	0,14

VII.1.2. Besoin domestiques

VII.1.2.1. Estimation de l'évolution de la population pour l'horizon de 10 ans (2025)

Les taux d'accroissement naturel ou TAN sont différents pour les 3 districts considérés :

Tableau 17: Taux d'accroissement naturel

District	TAN en %
Ambatondrazaka	3,01
Amparafaravola	3,39
Andilamena	2,63

Source: Monographie d'Ambatondrazaka, 2003

Pour estimer l'évolution de la population après 50 ans et 100 ans, nous allons utiliser la formule suivant :

$$N = No.(1+\mu)^{x} \tag{13}$$

Avec : N: nombre de population dans l'avenir

No: nombre de population de base

x : d'intervalle d'année considérée

μ: taux d'accroissement naturel de la population

Ainsi en 2025, le nombre de population pour les différents districts :

Tableau 18: Nombre de population estime en 2025 par district.

District	Population en 2025 458 610 428 232			
Ambatondrazaka	458 610			
Amparafaravola	428 232			
Andilamena	154 927			

VII.1.2.2. Consommation spécifique

La quantité d'eau nécessaire à une agglomération se détermine non dans l'absolu, mais en relation avec le climat, les habitudes de propreté, les circonstances locales, les usages divers que l'on fait de l'eau.

On évalue les besoins correspondants sous l'aspect de la quantité nécessaire et vitale par tête d'habitant et par jour. Les consommations unitaires de la population résidant dans la zone d'étude ne sont pas connues, néanmoins, les enquêtes réalisées par les projets d'AEP dans la même zone définissent les valeurs suivantes:

Pour la zone rurale: 30 l/jour/hab.et pour la zone urbaine: 60 l/jour/hab. Ces valeurs entrent également dans la fourchette fixée par l'OMS qui suivent :

- Pour la zone rurale: entre 25 et 40 l/jour/hab;
- Pour la zone urbaine: entre 60 et 110 l/jour/hab.

VII.1.2.3. Consommation totale en eau de la population

La consommation totale journalière s'obtient par la formule :

$$C_t = N_p. B_p \tag{14}$$

Avec : C_t : Consommation totale journalière

 N_p : Nombre de population

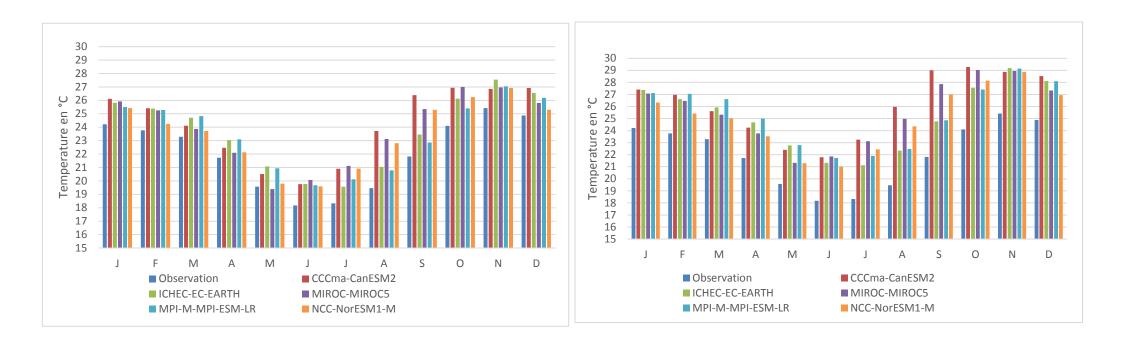
 B_{p} : Consommation journalière

D'après le calcul, nous avons $C_t = 68 \ 242 \ 500 \ l/j$

PARTIE III RESULTATS ET INTERPRETATIONS

CHAPITRE VIII: PRESENTATION DES RESULTATS PAR LA METHODE ADVANCED DELTA CHANGE (ADC)

Dans cette partie nous allons présenter en premier lieu les résultats de la température que nous avons obtenus lors de l'exécution de la script R pour l'application de la méthode ADC et surtout pour la mise à l'échelle des résultats de projections futures des 5 modèles issues du modèle de la circulation général au niveau de la station météorologique d'Ambohitsilaozana.

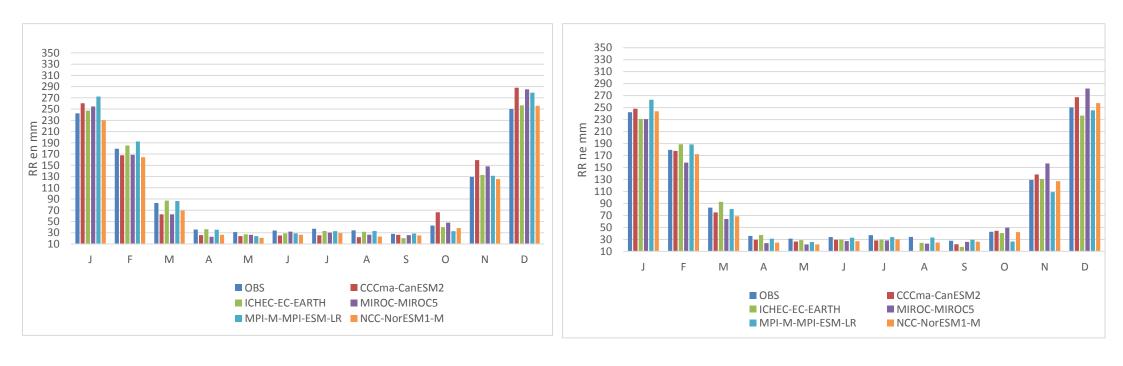

Le résultat obtenu par cette méthode sera présentés sous forme graphique, nous avons ainsi huit graphes qui présentent l'évolution de la température et la précipitation estimer par les cinq modèles climatiques régionales selon la période considéré c'est –à dire la future proche et lointaine par rapport à la période 1981-2010 dans le bassin versant Alaotra.

VIII.1. TEMPERATURE

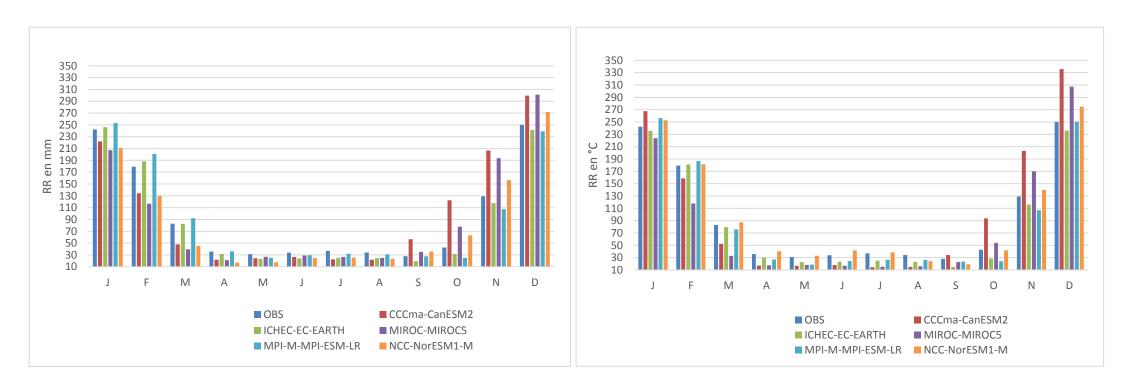
Lors de l'exécution de la méthode ADC sur le paramètre température, nous n'avons traité que la température maximale mensuelle qui est quasiment identique à la distribution spatiale de l'ETP et le résultat sera présenté sur la *figure 7* et *figure 8* dans la page suivante

Figure 7: Évolution des températures moyenne mensuelle pour le futur proche (2021-2050) selon le scenario d'émission RCP 4.5 (à gauche) et selon le scenario RCP 8.5 (à droit) par rapport aux observés 1981-2010 pour la station d'Ambohitsilaozana

Figure 8: Évolution des températures moyenne mensuelle pour le futur lointain (2271-2100) selon le scenario d'émission RCP 4.5 (à gauche) et selon le scenario RCP 8.5 (à droit) par rapport aux observés 1981-2010 pour la station d'Ambohitsilaozana


A partir de ces deux graphes nous observons tout d'abord une nette augmentation de la température maximale sur tous le mois dans la station pluviométrique d'Ambohitsilaozana pour les deux périodes considérés (futur proche ou future lointain) et pour les deux scenarios d'émission aussi RCP 4.5 et RCP 8.5. Et comme la projection s'accorde entre elles, ainsi le réchauffement climatique est sans équivoque. C'est l'importance du réchauffement qui est différente selon le scénario et selon la période de projection

Pour le futur proche (2021-2050), les deux scenarios RCP 4.5 et RCP 8.5 présentent presque le même résultat et montre que la température maximal va augmenter d'environ +0,5°C à +1,4°C pour les six 1^{er} mois, mais à partir du mois de juillet jusqu'en Novembre, 60% des modèles montrent que cette augmentation atteint jusqu'à 2°C par rapport à l'observation de 1981-2010 (*figure 7*).


Pour le futur lointain (2071-2100), l'augmentation de température est très importante, contrairement au futur proche. Les projections montrent donc une élévation des températures maximales mensuelles. Ces projections simulent aussi des variations oscillant entre+ 0,6°C à +2°C pour le mois de janvier au juin et à partir de mois de juillet au mois d'octobre, cette période annonce de la sècheresse, selon la climatologie de cette zone. La température augmentera de +2°C à +4°C pour le scenario RCP 4.5 tandis que pour le scenario RCP 8.5 qui est le scenario plus extrême l'augmentation peut atteindre jusqu'à +7°C surtout en mois d'août et septembre par rapport à la série d'observation 1981-2010 (*figure 8*). Mais annuellement, la des variations oscillent entre +2°C à +4°C pour les deux scenarios.

Ainsi pour le paramètre température, les 5 modèles projettent la même tendance. La température va augmenter pour un futur proche et un futur lointain pour les deux type de scenarios d'émission considéré RCP4.5 et RCP 8.5 par rapport à l'observé 1981-2010. Par ailleurs, nous remarquons qu'il y a une dispersion plus importante des résultats pour le futur lointain. En effet, plus la période à laquelle on s'intéresse est lointaine, l'incertitude plus est grande.

VIII.2. PRECIPITATION

Figure 9: Évolution des précipitations moyenne mensuelle pour le futur proche (2021-2050) selon le scenario d'émission RCP 4.5 (à gauche) et selon le scenario RCP 8.5 (à droit) par rapport aux observés 1981-2010 pour la station d'Ambohitsilaozana

Figure 10: Évolution des précipitations moyenne mensuelle pour le futur lointain (2071-2100) selon le scenario d'émission RCP 4.5 (à gauche) et selon le scenario RCP 8.5 (à droit) par rapport aux observés 1981-2010 pour la station d'Ambohitsilaozana

En s'intéressant aux précipitations (*figure 10*), nous observons que les variations de celles-ci sont plus hétérogènes pour la projection des 5 modèles et aussi pour le deux scenario climatique. Le rapport entre la projection et la donnée d'observation est donc très important dans cette interprétation pour que nous puissions constater la tendance de la précipitation dans la station d'Ambohitsilaozana.

Pour le futur proche (*figure 9*), les résultats sont hétérogènes. Mais dans cette période, 60% des modèles projettent une baisse de précipitation le mois de janvier jusqu'au mois de septembre et après cette précipitation va augmenter après jusqu'à la fin de l'année par rapport au niveau d'observation 2081-2010.Le rapport montre aussi une diminution jusqu'à -50% de quantité de précipitation pour le mois janvier au septembre selon le scenario RCP4.5.

Cette diminution est encore observée pour le scenario RCP 8.5 sur tous les mois sauf au mois de décembre. En moyenne le rapport entre les précipitations projetées et les précipitations observées présente une baisse d'environ de -20% de quantité des précipitations.

Pour le futur lointain, les résultats montrent également, comme la période 2021-2050, que les variations sont hétérogènes. Certains modèles simulent une augmentation de la quantité de précipitations tandis que d'autres projettent une diminution pour des saisons différentes. Pour les deux scenarios climatiques, nous avons constaté que 60% des simulations pour la période 2071 – 2100 montrent une augmentation des quantités de précipitations par rapport au niveau des observations en 1981 – 2010, en mois de décembre et de diminution pour les autres mois.

Le résultat nous permet de conclure donc que, pour les projections des quantités de précipitations, les résultats sont hétérogènes et ne présentent pas tous une même tendance. Mais la majorité du modèle projette une diminution de la quantité de précipitations presque tous les mois pour le futur et pour les deux types de scenario considéré par rapport au niveau de 1981 – 2001 sauf vers la fin de l'année.

CHAPITRE IX: RESULTAT DES APPORTS PAR LES DEUX METHODES

Rappelons que l'étude de l'impact du réchauffement climatique sur l'hydrologie requiert deux étapes différentes. Tout d'abord, puisque les MCG sont conçus pour fonctionner à une résolution grossière, la première étape consiste ainsi à régionaliser les scénarios climatiques RCP4.5 et le RCP8.5. Ce qui permet d'introduire les hétérogénéités spatiales non résolues par les MCG, tout en corrigeant les défauts statistiques pouvant être issus de ce processus. Nous avons parlés alors de descente d'échelle en appliquant la méthode ADC. La seconde et la dernière étape sont nécessaires à transformer ces projections climatiques en débits (pour bassin versant Alaotra) indicateurs du fonctionnement hydrologique du système.

Pour cela, l'application de la méthode de station de référence et la méthode CTGREF permettent d'estimer les apports annuels disponibles selon les différentes fréquences (humide ou sèche ou moyenne), et les résultats sont montrer sous forme des tableaux et afficher dans les deux sous chapitres suivants selon les deux périodes futur proche et lointain.

IX.1. APPORTS MOYENNES ANNUELS DISPONIBLES POUR LE FUTUR PROCHE

Ici nous allons présenter les résultats des apports moyens annuels (pour le bassin tout entier) disponibles ainsi que son évolution par rapport aux apports trouvés à partir des données observées dans le bassin versant d'Alaotra, selon les deux types de scenarios d'émission RCP4.5 et RCP8.5. La répartition mensuelle par chaque sous bassin sera affichée dans l'annexe.

		Métho	de CTGREF	=		Mét	hode de la	station de i	référence	
	Apport moyen annuel (I/s)	Apport annuel sec (I/s)		Apport annuel humide (I/s)		Apport moyen annuel (I/s)	Apport annuel sec (I/s)		Apport annuel humide (I/s)	
		5 ans	10 ans	5 ans	10 ans		5 ans	10 ans	5 ans	10 ans
OBSERVATION	91429,0	67115,6	55604,2	118657,4	134032,1	70128,1	47201,7	37087,4	97775,3	115307
CCCma-CanESM2	95015,6	68451,4	55957,2	124951,6	141915,8	70128,1	47201,7	37087,4	97775,3	115307
ICHEC-EC-EARTH	91293,8	65723,4	53699,6	120116,6	136452,2	70128,1	47201,7	37087,4	97775,3	115307
MIROC-MIROC5	91932,5	66571,6	54621,6	120463,6	136616,0	70128,1	47201,7	37087,4	97775,3	115307
MPI-M-MPI-ESM-LR	98285,3	69338,3	55824,5	131133,1	149820,0	70128,1	47201,7	37087,4	97775,3	115307
NCC-NorESM1-M	79277,0	54072,3	42447,6	108194,0	124744,7	70128,1	47201,7	37087,4	97775,3	115307

Tableau 19: Evolution des apports moyens annuels selon la différente fréquence par les deux méthodes pour le scenario RCP 4.5 par rapport aux apports des ressources observé

	Méthode CTGREF							station de r	éférence	
Source de	Apport annuel moyen annuel (I/s)			annuel de (I/s)	Apport moyen annuel	Apport annuel sec (I/s)		Apport annuel humide (I/s)		
précipitation	ion	5 ans	10 ans	5 ans	10 ans		5 ans	10 ans	5 ans	10 ans
OBSERVATION	91429,0	67115,6	55604,2	118657,4	134032,1	70128,1	47201,7	37087,4	97775,3	115307
CCCma-CanESM2	89225,3	64234,2	52482,7	117395,1	133360,5	70128,1	47201,7	37087,4	97775,3	115307
ICHEC-EC-EARTH	85759,3	60185,5	48268,8	114829,2	131382,7	70128,1	47201,7	37087,4	97775,3	115307
MIROC-MIROC5	87530,1	60778,7	48360,7	118044,2	135453,7	70128,1	47201,7	37087,4	97775,3	115307
MPI-M-MPI-ESM-LR	87723,0	65034,1	54254,7	113047,9	127320,2	70128,1	47201,7	37087,4	97775,3	115307
NCC-NorESM1-M	83332,3	57754,7	45889,7	112525,5	129186,9	70128,1	47201,7	37087,4	97775,3	115307

Tableau 20: Evolution des apports moyens annuels selon la différente fréquence par les deux méthodes pour le scenario RCP 8.5 par rapport aux apports des ressources observé

Les résultats obtenus par les deux méthodes n'ont pas la même valeur. Néanmoins, ces valeurs ne donnent pas une très grande différence. Dans la suite de notre analyse, nous n'avons interprété que les apports trouvés sur la méthode CTGREF car c'est le seul résultat qui dépend des paramètres climatiques.

Pour le scenario d'émission RCP 4.5 (*Tableau 19*), les débits à l'horizon de 2021-2050 obtenus par la ressource disponible projetée par les 5 modèles climatiques sont presque identiques à celle des apports estimés par les données observées 1981-2010 pour chaque fréquence considérée.

Par contre pour le scenario RCP 8.5, l'évolution des débits estimer à partir de la ressource projetée tend vers une baisse pour chaque fréquence donnée :

- -En année moyenne, l'apport donnée par le ressource projeté diminue de 3 à 9% --Tandis que pour la saison sèche, cette diminution atteint jusqu'à 18% par rapport aux apports donnés par les ressources observées.
- -Pour la saison humide, la variation est moindre et quelques apports tendent à augmenter par rapport aux apports estimés à partir de donnée observé.

IX.2. APPORTS MOYENS ANNUELS DISPONIBLE POUR LE FUTUR LOINTAIN

Les résultats sont toujours présentés sous forme de tableau suivant le type de scenario considéré. Le premier tableau présentera encore les valeurs des apports estimés à partir de scenario RCP 4.5 et la deuxième pour le scenario RCP 8.5.

		Mé	éthode CTG	GREF		Méthode de la station de référence							
Source de précipitation	Apport moyen annuel (I/s)	Apport annuel sec (I/s)		• •	annuel le (l/s)	Apport moyen annuel (I/s)		annuel (I/s)	Apport annuel humide (I/s)				
		5 ans	10 ans	5 ans	10 ans		5 ans	10 ans	5 ans	10 ans			
OBSERVATION	91429,0	67115,6	55604,2	118657,4	134032,1	70128,1	47201,7	37087,4	97775,3	115307			
CCCma-CanESM2	80470,2	57192,1	46296,1	106820,7	121791,0	70128,1	47201,7	37087,4	97775,3	115307			
ICHEC-EC-EARTH	82073,0	58707,1	47744,9	108467,0	123444,1	70128,1	47201,7	37087,4	97775,3	115307			
MIROC-MIROC5	87816,7	61741,4	49583,0	117439,0	134301,6	70128,1	47201,7	37087,4	97775,3	115307			
MPI-M-MPI-ESM-LR	87649,2	61991,4	50002,3	116740,3	133282,4	70128,1	47201,7	37087,4	97775,3	115307			
NCC-NorESM1-M	77595,1	51249,2	39240,3	108134,0	125710,0	70128,1	47201,7	37087,4	97775,3	115307			

Tableau 21: Evolution des apports moyens annuels selon la différente fréquence par les deux méthodes pour le scenario RCP 4.5 par rapport aux apports des ressources observé

		Méth	Méthode de la station de référence								
Source de	Apport moyen annuel (I/s)	Apport sec			Apport annuel humide (I/s)		Apport sec		Apport annuel humide (I/s)		
précipitation		5 ans	10 ans	5 ans	10 ans		5 ans	10 ans	5 ans	10 ans	
OBSERVATION	91429,0	67115,6	55604,2	118657,4	134032,1	70128,1	47201,7	37087,4	97775,3	115307	
CCCma-CanESM2	77062,0	55712,0	45657,7	101094,1	114703,6	70128,1	47201,7	37087,4	97775,3	115307	
ICHEC-EC-EARTH	76995,8	54268,5	43661,9	102793,5	117472,3	70128,1	47201,7	37087,4	97775,3	115307	
MIROC-MIROC5	76484,2	49434,0	37202,5	108054,2	126289,2	70128,1	47201,7	37087,4	97775,3	115307	
MPI-M-MPI-ESM-LR	80801,5	54876,4	42938,0	110586,1	127646,3	70128,1	47201,7	37087,4	97775,3	115307	
NCC-NorESM1-M	94146,4	59890,1	44491,9	134325,3	157593,0	70128,1	47201,7	37087,4	97775,3	115307	

Tableau 22: Evolution des apports moyens annuels selon la différente fréquence par les deux méthodes pour le scenario RCP8.5 par rapport aux apports des ressources observé

Les variations de débit pour le futur lointain semblent tendre vers une nette baisse par rapport à celle de la période observée de 1981 – 2010 pour tous les scénarios d'émission RCP4.5 et RCP8.5. C'est l'envergure de la diminution qui est différente selon le scénario d'émission (*Tableau 21*, *Tableau 22*).

-Pour le scenario RCP 4.5, 60% des résultats montrent que la tendance des débits baisse par rapport aux débits amenés par la précipitation observée 1981-2010 mais cette diminution varie selon la fréquence considérée.

-Pour le scenario d'émission RCP 8.5, la diminution de débits est plus sévère que le résultat obtenu par le scenario auparavant surtout en année sèche. La variation de ces débits oscille entre de -10 à -23% pour l'année quinquennale sèche et de -20 à -30% pour l'année décennale sèche toujours par rapport aux valeurs des apports estimées à partir des données observées.

Après avoir ces quatre résultats, nous pouvons conclure ainsi que la méthode CTGREF permet d'évaluer déjà la situation des apports disponibles dans le grand lac Alaotra par rapport aux apports issus des ressources observées de la période 1981-2010. La situation hydrologique varie aussi selon le paramètre climatique. Il nous reste donc à évaluer ces apports estimés par rapport au besoin pour la période considérée (futur proche- futur lointain).

CHAPITRE X: ADEQUATION DES RESSOURCES DISPONIBLE ET DES BESOINS

Les adéquations ont été réalisées sur différentes fréquences et pour des horizons multiples pendant l'évaluation des besoins.

Les quantités des apports en eaux souterraines ne peuvent pas être quantifiées et sont d'autant plus négligeables par rapport aux apports des rivières, et de ce fait, elles ne seront pas alors prises en compte dans les adéquations.

Les besoins considérés comprennent les besoins en riziculture irriguée et les besoins domestiques.

X.1. ADEQUATION EN ANNEE MOYENNE

En considérant le bassin versant en entier, les résultats obtenus par les deux méthodes donnent un résultat excédentaire annuellement face à la situation des ressources projetées pour des années moyennes jusqu'à une projection de 20 ans. Toutes les valeurs sont exprimées en (l/s).

* Adéquation en année moyenne pour une projection de 10 ans des besoins (en 2025)

METHODE CTGREF

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D
$C_t(l/s)$	1073,02	969,18	1073,02	1038,41	1073,02	1038,41	1073,02	1073,02	1038,41	1073,02	1038,41	1073,02
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	150781,9	166535,3	177787,4	111398,6	77641,3	64138,6	65263,8	67514,2	49510,5	40508,6	50635,6	103521,7
Modele2	158042,8	174554,8	186349	116762,9	81380,3	67227,2	68406,6	70765,4	51894,7	42459,3	53074,1	108507,
Modele3	167 562,2	185 068,7	197 573,4	123 795,9	86 281,9	71 276,4	72 527,2	75 027,7	55 020,4	45 016,6	56 270,8	115 042,7
Modele4	164867,7	182092,7	194396,5	121805,3	84894,4	70130,4	71360,6	73821,3	54135,7	44292,9	55366	113192,8
Modele5	150522,5	166248,7	177481,8	111206,9	77507,8	64028,2	65151,5	67398	49425,3	40438,9	50548,7	103343,6
Reste	54 205,73	109 142,90	124 205,48	56 719,74	65 332,68	63 100,19	64 190,78	66 441,18	48 472,09	39 435,58	-81 016,12	-59 439,76
Reste	61 466,65	117 162,36	132 767,09	62 084,12	69 071,64	66 188,76	67 333,57	69 692,42	50 856,25	41 386,24	-78 577,64	-54 454,44
Reste	70 986,03	127 676,30	143 991,48	69 117,04	73 973,28	70 237,99	71 454,18	73 954,68	53 981,99	43 943,58	-75 380,92	-47 918,76
Reste	68 291,53	124 700,30	140 814,58	67 126,44	72 585,78	69 091,99	70 287,58	72 748,28	53 097,29	43 219,88	-76 285,72	-49 768,66
Reste	53 946,33	108 856,30	123 899,88	56 528,04	65 199,18	62 989,79	64 078,48	66 324,98	48 386,89	39 365,88	-81 103,02	-59 617,86

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 550 790,45 604 977,02 676 016,85 655 909,25 548 854,85

Tableau 23:Adéquation en année moyenne pour une projection de 10 ans des besoins par les apports estimés à partir des 5 modèles pour le scenario RCP 4.5 selon la méthode CTGREF

Mois	J	F	M	А	М	J	J	А	S	0	N	D
$C_t(l/s)$	1073,02	969,18	1073,02	1038,41	1073,02	1038,41	1073,02	1073,02	1038,41	1073,02	1038,41	1073,02
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	143 473,9	158 463,9	169 170,8	105 999,7	73 878,5	61 030,0	62 101,1	64 242,1	47 110,6	38 545,2	48 181,6	98 504,6
Modele2	147827,4	163272,2	174304,3	109216	76120,1	62882,1	63985,3	66191,4	48540,3	39714,8	49643,4	101493,3
Modele3	146800,4	162137,8	173093	108456,8	75591,6	62444,6	63540,3	65731,5	48203	39438,9	49298,3	100788,2
Modele4	150361,3	166070,7	177291,7	111087,9	77424,9	63959,8	65081,8	67325,9	49372,4	40395,6	50494,5	103233,2
Modele5	141058,7	155796,1	166322,9	104214,9	72634,7	60002,7	61055,2	63160,6	46317,8	37896,4	47370,4	96846,3
Reste	46 897,73	101 071,50	115 588,88	51 320,84	61 569,88	59 991,59	61 028,08	63 169,08	46 072,19	37 472,18	-83 470,12	-64 456,86
Reste	51 251,23	105 879,80	120 722,38	54 537,14	63 811,48	61 843,69	62 912,28	65 118,38	47 501,89	38 641,78	-82 008,32	-61 468,16
Reste	50 224,23	104 745,40	119 511,08	53 777,94	63 282,98	61 406,19	62 467,28	64 658,48	47 164,59	38 365,88	-82 353,42	-62 173,26
Reste	53 785,17	108 678,33	123 709,81	56 408,99	65 116,25	62 921,26	64 008,75	66 252,95	48 333,97	39 322,56	-81 157,24	-59 728,30
Reste	44 482,49	98 403,73	112 740,98	49 536,12	60 326,06	58 964,16	59 982,22	62 087,57	45 279,36	36 823,33	-84 281,28	-66 115,21

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 496 254,95 528 743,55 521 077,35 547 652,49 478 229,55

Tableau 24: Adéquation en année moyenne pour une projection de 10 ans des besoins par les apports estimés à partir des 5 modèles pour le scenario RCP 8.5 selon la méthode CTGREF

METHODE DE LA STATION DE REFERENCE

Mois	J	F	M	А	M	J	J	А	S	0	N	D
$C_t(l/s)$	1073,02	969,18	1073,02	1038,41	1073,02	1038,41	1073,02	1073,02	1038,41	1073,02	1038,41	1073,02
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Apports	97 152,70	107 303,10	114 553,10	71 776,90	50 026,40	41 326,00	42 051,10	43 501,10	31 900,80	26 100,80	32 626,00	66 702,00
Reste	576,5291	49910,695	60971,1824	17098,0369	37717,7784	40287,5905	40978,0769	42428,0769	30862,3905	25027,7769	- 99025,7225	- 96259,4571

Adéquation 150 572,95

Tableau 25: Adéquation en année moyenne pour une projection de 10 ans des besoins selon la méthode de la station de référence

Dans 10 ans, tous les résultats obtenus par l'adéquation des apports projetés en fonction des RCP 4.5 et RCP 8.5 au futur proche et aux besoins montrent que les ressources seront suffisantes annuellement. Mais au mois de Novembre et Décembre, nous observons qu'elle ne le sera pas même par la méthode CTGREF où les apports sont supérieurs.

❖ Adéquation en année moyenne pour une projection de 20 ans des besoins (en 2035)

METHODE CTGREF

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D
$C_t(l/s)$	1458,7	1317,5	1458,8	1411,6	1458,7	1411,6	1458,8	1458,8	1411,6	1458,8	1411,6	1458,8
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	150781,9	166535,3	177787,4	111398,6	77641,3	64138,6	65263,8	67514,2	49510,5	40508,6	50635,6	103521,7
Modele2	158042,8	174554,7	186349	116762,9	81380,3	67227,2	68406,6	70765,4	51894,7	42459,3	53074,1	108507,01
Modele3	167 562,20	185 068,70	197 573,40	123 795,90	86 281,90	71 276,40	72 527,20	75 027,70	55 020,40	45 016,60	56 270,80	115 042,70
Modele4	164867,7	182092,7	194396,5	121805,3	84894,4	70130,4	71360,6	73821,3	54135,7	44292,9	55366	113192,8
Modele5	150522,5	166248,7	177481,8	111206,9	77507,8	64028,2	65151,5	67398	49425,3	40438,9	50548,7	103343,6
Reste	53 820,07	108 794,56	123 819,83	56 346,52	64 947,02	62 726,98	63 805,12	66 055,52	48 098,88	39 049,92	-81 389,34	-59 825,41
Reste	61 081,00	116 814,02	132 381,43	61 710,91	68 685,98	65 815,55	66 947,92	69 306,77	50 483,04	41 000,59	-78 950,85	-54 840,10
Reste	70 600,37	127 327,96	143 605,83	68 743,82	73 587,62	69 864,78	71 068,52	73 569,02	53 608,78	43 557,92	-75 754,14	-48 304,41
Reste	67 905,87	124 351,96	140 428,93	66 753,22	72 200,12	68 718,78	69 901,92	72 362,62	52 724,08	42 834,22	-76 658,94	-50 154,31
Reste	53 560,67	108 507,96	123 514,23	56 154,82	64 813,52	62 616,58	63 692,82	65 939,32	48 013,68	38 980,22	-81 476,24	-60 003,51

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 546 249,68 600 436,25 671 476,08 651 368,48 544 314,08

Tableau 26: Adéquation en année moyenne pour une projection de 20 ans des besoins par les apports estimés à partir des modèles pour le scenario RCP 4.5 selon la méthode CTGREF

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D
$C_t(l/s)$	1458,7	1317,5	1458,8	1411,6	1458,7	1411,6	1458,8	1458,8	1411,6	1458,8	1411,6	1458,8
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	143 473,90	158 463,90	169 170,80	105 999,70	73 878,50	61 030,00	62 101,10	64 242,10	47 110,60	38 545,20	48 181,60	98 504,60
Modele2	147827,4	163272,2	174304,3	109216	76120,1	62882,1	63985,3	66191,4	48540,3	39714,8	49643,4	101493,3
Modele3	146800,4	162137,8	173093	108456,8	75591,6	62444,6	63540,3	65731,5	48203	39438,9	49298,3	100788,2
Modele4	150361,3	166070,7	177291,7	111087,9	77424,9	63959,8	65081,8	67325,9	49372,8	40395,6	50494,5	103233,2
Modele5	141058,7	155796,1	166322,9	104214,9	72634,7	60002,7	61055,2	63160,6	46317,8	37896,4	47370,5	96846,3
Reste	46 512,07	100 723,16	115 203,23	50 947,62	61 184,22	59 618,38	60 642,42	62 783,42	45 698,98	37 086,52	-83 843,34	-64 842,51
Reste	50 865,57	105 531,46	120 336,73	54 163,92	63 425,82	61 470,48	62 526,62	64 732,72	47 128,68	38 256,12	-82 381,54	-61 853,81
Reste	49 838,57	104 397,06	119 125,43	53 404,72	62 897,32	61 032,98	62 081,62	64 272,82	46 791,38	37 980,22	-82 726,64	-62 558,91
Reste	53 399,51	108 329,99	123 324,15	56 035,78	64 730,59	62 548,05	63 623,10	65 867,29	47 960,76	38 936,91	-81 530,46	-60 113,95
Reste	44 096,84	98 055,40	112 355,33	49 162,91	59 940,41	58 590,94	59 596,56	61 701,92	44 906,15	36 437,68	-84 654,49	-66 500,87

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 491 714,18 524 202,78 516 536,58 543 111,71 473 688,78

Tableau 27:Adéquation en année moyenne pour une projection de 20 ans des besoins par les apports estimés à partir des 5 modèles pour le scenario RCP8.5 selon la méthode CTGREF

METHODE DE LA STATION DE REFERENCE

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D
$C_t(l/s)$	1458,7	1317,5	1458,8	1411,6	1458,7	1411,6	1458,8	1458,8	1411,6	1458,8	1411,6	1458,8
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Apports	97 152,70	107 303,10	114 553,10	71 776,90	50 026,40	41 326,00	42 051,10	43 501,10	31 900,80	26 100,80	32 626,00	66 702,00
Reste	190,87	49 562,36	60 585,53	16 724,82	37 332,12	39 914,38	40 592,42	42 042,42	30 489,18	24 642,12	-99 398,94	-96 645,11

Adéquation 146 032,17

Tableau 28: Adéquation en année moyenne pour une projection de 20 ans des besoins selon la méthode de la station de référence

Les résultats trouvés par la station de référence donnent des apports inferieurs mais suffisants annuellement, même pour une projection supérieure à 20 ans. Alors nous pouvons déjà annoncer que les ressources en eau sont suffisantes et excédentaires dans la cuvette du lac Alaotra en moyenne annuelle. Par contre, les mois de Novembre et Décembre restent toujours déficitaires pour le deux scénarios et pour les deux méthodes qui est la période du repiquage selon le calendrier cultural. Nous espérons que ce déficit pourrait être comblé par l'arrivée de la pluie au mois de janvier.

X.2. ADEQUATION EN ANNEE QUINQUENNAL SECHE SELON LA MOYENNE DES 2 METHODES

Une adéquation sur cette fréquence est intéressante. En effet, en utilisant les valeurs obtenues par les méthodes « station de référence », les projections pour 10 et 20 ans sont déficitaires.

Ceci suggère qu'en année quinquennale sèche, les ressources sont limitées et insuffisantes par rapports aux besoins. On suppose alors que cette méthode tend à sous-estimer les apports que la méthode « CTGREF » donne des valeurs largement excédentaires même face à situation de notre ressource projeté.

Cet écart est difficilement compréhensible car les paramètres de base ont été pour les 2 formules tirées de sous BV de l'Est et de même morphologie.

La différence pourrait alors s'expliquer par les valeurs des débits spécifiques. En effet, le réseau hydrographique pour les autres sous BV est très dense, ce qui n'est pas le cas pour le bassin de référence.

Le débit spécifique \ll q \gg choisi ne reflète donc pas au relief, densité des cours d'eau et les autres caractéristiques du BV qui sont différentes de ceux de la station de référence.

La moyenne des valeurs résultats des 2 méthodes est alors retenue pour avoir une vision « moyenne » non pessimiste mais tenant compte de l'aspect du cas le plus défavorable (les valeurs CT GREF sont considérées comme élevées).

NB : Les valeurs utilisées dans tous les résultats sont en l/s.

❖ Adéquation en année quinquennal sèche pour une projection de 10 ans des besoins(2025)

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D
$C_t(l/s)$	1073,02	969,18	1073,02	1038,41	1073,02	1038,41	1073,02	1073,02	1038,41	1073,02	1038,41	1073,02
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	92 258,40	101 897,40	108 782,20	68 160,90	47 506,30	39 244,10	39 932,90	41 309,60	30 293,70	24 785,90	30 982,30	63 341,70
Modele2	90 794,60	100 280,60	107 056,70	67 079,50	46 752,40	38 621,50	39 299,10	40 654,10	29 813,20	24 392,60	30 490,60	62 336,50
Modele3	91 476,60	101 033,90	107 860,50	67 583,40	47 103,60	38 911,60	39 594,30	40 959,60	30 037,00	24 575,80	30 719,80	62 804,80
Modele4	93701,01	103490,66	110483,27	69226,86	48249,03	39857,89	40557,15	41955,68	30767,49	25173,40	31466,76	64332,04
Modele5	81427,08	89934,39	96011,04	60158,82	41928,87	34636,89	35244,56	36459,89	26737,25	21875,93	27344,92	55905,16
Reste	-4 317,77	44 505,00	55 200,28	13 482,04	35 197,68	38 205,69	38 859,88	40 236,58	29 255,29	23 712,88	-100 669,42	-99 619,76
Reste	-5 781,57	42 888,20	53 474,78	12 400,64	34 443,78	37 583,09	38 226,08	39 581,08	28 774,79	23 319,58	-101 161,12	-100 624,96
Reste	-5 099,57	43 641,50	54 278,58	12 904,54	34 794,98	37 873,19	38 521,28	39 886,58	28 998,59	23 502,78	-100 931,92	-100 156,66
Reste	-2 875,16	46 098,26	56 901,35	14 548,00	35 940,41	38 819,48	39 484,13	40 882,66	29 729,08	24 100,38	-100 184,96	-98 629,42
Reste	-15 149,09	32 541,99	42 429,12	5 479,96	29 620,25	33 598,48	34 171,54	35 386,87	25 698,84	20 802,91	-104 306,80	-107 056,30

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 114 048,35 103 124,35 108 213,85 124 814,19 33 217,75

Tableau 29: Adéquation en année quinquennal sèche pour une projection de 10 ans des besoins(2025) selon la moyenne de deux méthodes pour le scenario d'émission RCP 4.5

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D
$C_t(l/s)$	1073,02	969,18	1073,02	1038,41	1073,02	1038,41	1073,02	1073,02	1038,41	1073,02	1038,41	1073,02
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	89 597,30	98 958,20	105 644,50	66 195,00	46 136,20	38 112,20	38 780,80	40 118,50	29 420,00	24 071,00	30 088,70	61 514,50
Modele2	88 440,60	97 680,60	104 280,50	65 340,40	45 540,30	37 620,20	38 280,20	39 600,30	29 040,00	23 760,30	29 700,30	60 720,50
Modele3	77862,3	85997,1	91807,6	57525,1	40093,3	33120,5	33701,6	34863,7	25566,7	20918,2	26147,9	53457,7
Modele4	90240,42	99668,53	106402,88	66670,16	46467,08	38385,85	39059,29	40406,16	29631,18	24243,69	30304,62	61956,11
Modele5	84387,79	93204,43	99502,02	62346,20	43453,42	35896,29	36526,06	37785,58	27709,42	22671,35	28339,18	57937,89
Reste	-6 978,87	41 565,80	52 062,58	11 516,14	33 827,58	37 073,79	37 707,78	39 045,48	28 381,59	22 997,98	-101 563,02	-101 446,96
Reste	-8 135,57	40 288,20	50 698,58	10 661,54	33 231,68	36 581,79	37 207,18	38 527,28	28 001,59	22 687,28	-101 951,42	-102 240,96
Reste	-18 713,92	28 604,72	38 225,68	2 846,19	27 784,68	32 082,09	32 628,58	33 790,68	24 528,29	19 845,18	-105 503,81	-18 713,92
Reste	-6 335,75	42 276,13	52 820,96	11 991,30	34 158,46	37 347,44	37 986,27	39 333,14	28 592,77	23 170,67	-101 347,10	-101 005,35
Reste	-12 188,38	35 812,03	45 920,10	7 667,34	31 144,80	34 857,88	35 453,04	36 712,56	26 671,01	21 598,33	-103 312,54	-105 023,57

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 94 189,85 6 614,64 85 557,15 98 988,92 55 312,58

Tableau 30: Adéquation en année quinquennal sèche pour une projection de 10 ans des besoins(2025) selon la moyenne de deux méthodes pour le scenario d'émission RCP 8.5

Adéquation en année quinquennal sèche pour une projection de 20 ans des besoins(2035)

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D
$C_t(l/s)$	1458,7	1317,5	1458,8	1411,6	1458,7	1411,6	1458,8	1458,8	1411,6	1458,8	1411,6	1458,8
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	92 258,40	101 897,40	108 782,20	68 160,90	47 506,30	39 244,10	39 932,90	41 309,60	30 293,70	24 785,90	30 982,30	63 341,70
Modele2	90 794,60	100 280,60	107 056,70	67 079,50	46 752,40	38 621,50	39 299,10	40 654,10	29 813,20	24 392,60	30 490,60	62 336,50
Modele3	91 476,60	101 033,90	107 860,50	67 583,40	47 103,60	38 911,60	39 594,30	40 959,60	30 037,00	24 575,80	30 719,80	62 804,80
Modele4	93701,01	103490,66	110483,27	69226,86	48249,03	39857,89	40557,15	41955,68	30767,49	25173,40	31466,76	64332,04
Modele5	81427,08	89934,39	96011,04	60158,82	41928,87	34636,89	35244,56	36459,89	26737,25	21875,93	27344,92	55905,16
Reste	-4 703,43	44 156,66	54 814,63	13 108,82	34 812,02	37 832,48	38 474,22	39 850,92	28 882,08	23 327,22	-101 042,64	-100 005,41
Reste	-6 167,23	42 539,86	53 089,13	12 027,42	34 058,12	37 209,88	37 840,42	39 195,42	28 401,58	22 933,92	-101 534,34	-101 010,61
Reste	-5 485,23	43 293,16	53 892,93	12 531,32	34 409,32	37 499,98	38 135,62	39 500,92	28 625,38	23 117,12	-101 305,14	-100 542,31
Reste	-3 260,82	45 749,92	56 515,70	14 174,78	35 554,75	38 446,27	39 098,47	40 497,00	29 355,87	23 714,72	-100 558,18	-99 015,07
Reste	-15 534,75	32 193,65	42 043,47	5 106,74	29 234,59	33 225,27	33 785,88	35 001,21	25 325,63	20 417,25	-104 680,02	-107 441,95

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 109 507,58 98 583,58 103 673,08 120 273,42 28 676,98

Tableau 31: Adéquation en année quinquennal sèche pour une projection de 20 ans des besoins(2025) selon la moyenne de deux méthodes pour le scenario d'émission RCP 4.5

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D
$C_t(l/s)$	1458,7	1317,5	1458,8	1411,6	1458,7	1411,6	1458,8	1458,8	1411,6	1458,8	1411,6	1458,8
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	89 597,30	98 958,20	105 644,50	66 195,00	46 136,20	38 112,20	38 780,80	40 118,50	29 420,00	24 071,00	30 088,70	61 514,50
Modele2	88 440,60	97 680,60	104 280,50	65 340,40	45 540,30	37 620,20	38 280,20	39 600,30	29 040,00	23 760,30	29 700,30	60 720,50
Modele3	77862,3	85997,1	91807,6	57525,1	40093,3	33120,5	33701,6	34863,7	25566,7	20918,2	26147,9	53457,7
Modele4	90240,42	99668,53	106402,88	66670,16	46467,08	38385,85	39059,29	40406,16	29631,18	24243,69	30304,62	61956,11
Modele5	84387,79	93204,43	99502,02	62346,20	43453,42	35896,29	36526,06	37785,58	27709,42	22671,35	28339,18	57937,89
Reste	-7 364,53	41 217,46	51 676,93	11 142,92	33 441,92	36 700,58	37 322,12	38 659,82	28 008,38	22 612,32	-101 936,24	-101 832,61
Reste	-8 521,23	39 939,86	50 312,93	10 288,32	32 846,02	36 208,58	36 821,52	38 141,62	27 628,38	22 301,62	-102 324,64	-102 626,61
Reste	-19 099,60	28 256,40	37 839,90	2 473,00	27 399,00	31 708,90	32 242,80	33 404,90	24 155,10	19 459,40	-105 877,00	-109 889,50
Reste	-6 721,41	41 927,79	52 435,31	11 618,08	33 772,80	36 974,23	37 600,61	38 947,48	28 219,56	22 785,01	-101 720,32	-101 391,00
Reste	-12 574,04	35 463,69	45 534,45	7 294,12	30 759,14	34 484,67	35 067,38	36 326,90	26 297,80	21 212,67	-103 685,76	-105 409,22

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 89 649,08 81 016,38 2 073,30 94 448,15 50 771,81

Tableau 32: Adéquation en année quinquennal sèche pour une projection de 20 ans des besoins(2035) selon la moyenne de deux méthodes pour le scenario d'émission RCP 8.5

* Adéquation en année quinquennal sèche une pour projection de 30 ans des besoins(2045)

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D
$C_t(l/s)$	1984,2	1792,2	1984,2	1920,2	1984,2	1920,2	1984,2	1984,2	1920,2	1984,2	1920,2	1984,2
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	92 258,40	101 897,40	108 782,20	68 160,90	47 506,30	39 244,10	39 932,90	41 309,60	30 293,70	24 785,90	30 982,30	63 341,70
Modele2	90 794,60	100 280,60	107 056,70	67 079,50	46 752,40	38 621,50	39 299,10	40 654,10	29 813,20	24 392,60	30 490,60	62 336,50
Modele3	91 476,60	101 033,90	107 860,50	67 583,40	47 103,60	38 911,60	39 594,30	40 959,60	30 037,00	24 575,80	30 719,80	62 804,80
Modele4	93701,01	103490,66	110483,27	69226,86	48249,03	39857,89	40557,15	41955,68	30767,49	25173,40	31466,76	64332,04
Modele5	87938,225	97125,8008	103688,355	64969,2857	45281,6233	37406,5584	38062,8138	39375,3246	28875,2381	23625,1948	29531,4935	60375,4978
Reste	-5 228,96	43 681,98	54 289,09	12 600,24	34 286,49	37 323,89	37 948,68	39 325,38	28 373,49	22 801,68	-101 551,22	-100 530,95
Reste	-6 692,76	42 065,18	52 563,59	11 518,84	33 532,59	36 701,29	37 314,88	38 669,88	27 892,99	22 408,38	-102 042,92	-101 536,15
Reste	-6 010,76	42 818,48	53 367,39	12 022,74	33 883,79	36 991,39	37 610,08	38 975,38	28 116,79	22 591,58	-101 813,72	-101 067,85
Reste	-3 786,35	45 275,24	55 990,16	13 666,20	35 029,22	37 937,68	38 572,93	39 971,46	28 847,28	23 189,18	-101 066,76	-99 540,61
Reste	-9 549,17	38 910,40	49 195,26	9 408,59	32 061,82	35 486,36	36 078,61	37 391,12	26 955,04	21 640,99	-103 002,01	-103 497,10

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 103 319,80 92 395,80 97 485,30 114 085,64 71 079,91

Tableau 33: Adéquation en année quinquennal sèche pour une projection de 30 ans des besoins(2045) selon la moyenne de deux méthodes pour le scenario d'émission RCP 4.5

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D
$C_t(l/s)$	1984,2	1792,2	1984,2	1920,2	1984,2	1920,2	1984,2	1984,2	1920,2	1984,2	1920,2	1984,2
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	89 597,30	98 958,20	105 644,50	66 195,00	46 136,20	38 112,20	38 780,80	40 118,50	29 420,00	24 071,00	30 088,70	61 514,50
Modele2	88 440,60	97 680,60	104 280,50	65 340,40	45 540,30	37 620,20	38 280,20	39 600,30	29 040,00	23 760,30	29 700,30	60 720,50
Modele3	77862,3	85997,1	91807,6	57525,1	40093,3	33120,5	33701,6	34863,7	25566,7	20918,2	26147,9	53457,7
Modele4	90240,42	99668,53	106402,88	66670,16	46467,08	38385,85	39059,29	40406,16	29631,18	24243,69	30304,62	61956,11
Modele5	84387,79	93204,43	99502,02	62346,20	43453,42	35896,29	36526,06	37785,58	27709,42	22671,35	28339,18	57937,89
Reste	-7 890,06	40 742,78	51 151,39	10 634,34	32 916,39	36 191,99	36 796,58	38 134,28	27 499,79	22 086,78	-102 444,82	-102 358,15
Reste	-9 046,76	39 465,18	49 787,39	9 779,74	32 320,49	35 699,99	36 295,98	37 616,08	27 119,79	21 776,08	-102 833,22	-103 152,15
Reste	-19 625,10	27 781,70	37 314,50	1 964,40	26 873,50	31 200,30	31 717,40	32 879,50	23 646,50	18 934,00	-106 385,60	-110 414,90
Reste	-7 246,94	41 453,11	51 909,77	11 109,50	33 247,27	36 465,64	37 075,07	38 421,94	27 710,97	22 259,47	-102 228,90	-101 916,54
Reste	-13 099,57	34 989,01	45 008,91	6 785,54	30 233,61	33 976,08	34 541,84	35 801,36	25 789,21	20 687,13	-104 194,34	-105 934,76

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 83 461,30 74 828,60 -4 113,80 88 260,37 44 584,03

Tableau 34: Adéquation en année quinquennal sèche pour une projection de 30 ans des besoins(2045) selon la moyenne de deux méthodes pour le scenario d'émission RCP 8.5

En générale, pour une fréquence quinquennale sèche, les apports obtenus à partir de la ressource du futur proche (2021-2050) pour une projection des besoins de 10 ans, 20 ans et 30 ans, seront encore suffisant pour le scenario RCP 4.5. Mais pour le mois de Novembre, Décembre et Janvier, ils sont légèrement inférieurs aux besoins pour les deux scenarios. Or dans cette période, l'utilisation des eaux surtout pour le secteur agriculture est importante selon le calendrier cultural dans la région Alaotra.

Par ailleurs, un modèle estime pour la projection de 30 ans des besoins que la ressource sera nettement insuffisante pour des années quinquennales sèches (Adéquation négative) pour le scenario d'émission plus extrême. Mais heureusement, la majorité des modèles donnent des résultats positifs, ainsi les ressources sont excédentaires. Les apports restent toujours insuffisants pour les mois cités ci-dessus.

* Adéquation en année quinquennal sèche pour une projection de 50 ans des besoins(2065)

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D
$C_t(l/s)$	5853,8	5287,3	5853,8	5665	5853,8	5665	5853,8	5853,8	5665	5853,8	5665	5853,8
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	91964,96	101573,23	108436,29	67944,26	47355,09	39119,42	39805,73	41178,34	30197,45	24707,00	30883,75	63140,12
Modele2	93 882,00	103 691,00	110 696,80	69 360,60	48 342,10	39 934,90	40 635,60	42 036,80	30 827,20	25 222,20	31 527,50	64 456,50
Modele3	99 280,30	109 652,60	117 061,60	73 348,70	51 121,90	42 231,00	42 971,90	44 453,90	32 599,50	26 672,30	33 340,30	68 162,40
Modele4	87794,07	96966,58	103518,38	64862,78	45207,39	37345,24	38000,42	39310,78	28827,90	23586,47	29483,08	60276,52
Modele5	79157,32	87427,49	93334,75	58481,90	40760,11	33671,39	34262,13	35443,58	25991,96	21266,15	26582,68	54346,82
Reste	-9 392,03	39 862,67	50 073,55	8 638,80	30 265,65	33 454,41	33 951,88	35 324,49	24 532,44	18 853,16	-105 394,57	-104 602,16
Reste	-7 474,99	41 980,43	52 334,06	10 055,14	31 252,66	34 269,89	34 781,76	36 182,96	25 162,19	19 368,36	-104 750,82	-103 285,78
Reste	-2 076,69	47 942,03	58 698,86	14 043,24	34 032,46	36 565,99	37 118,06	38 600,06	26 934,49	20 818,46	-102 938,02	-99 579,88
Reste	-13 562,92	35 256,02	45 155,64	5 557,32	28 117,95	31 680,23	32 146,57	33 456,93	23 162,89	17 732,62	-106 795,24	-107 465,75
Reste	-22 199,67	25 716,93	34 972,02	-823,56	23 670,67	28 006,39	28 408,28	29 589,73	20 326,95	15 412,30	-109 695,64	-113 395,46

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 55 568,64 69 875,84 110 159,04 24 442,25 -40 011,07

Tableau 35: Adéquation en année quinquennal sèche pour une projection de 50 ans des besoins(2065) selon la moyenne de deux méthodes pour le scenario d'émission RCP 4.5

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D
$C_t(l/s)$	5853,8	5287,3	5853,8	5665	5853,8	5665	5853,8	5853,8	5665	5853,8	5665	5853,8
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	89584,8	98944,4	105629,8	66185,8	46129,5	38106,9	38775,5	40112,6	29415,9	24067,7	30084,5	61505,9
Modele2	96 429,60	106 504,30	113 700,70	71 243,00	49 654,00	41 018,60	41 738,20	43 177,80	31 663,60	25 906,50	32 383,00	66 205,30
Modele3	79 484,20	87 788,40	93 720,20	58 723,30	40 928,40	33 810,40	34 403,50	35 590,00	26 099,40	21 354,20	26 692,70	54 571,30
Modele4	82073,59	90648,44	96773,34	60636,46	42261,77	34911,90	35524,39	36749,37	26949,54	22049,62	27562,03	56349,03
Modele5	86104,59	95100,59	101526,31	63614,59	44337,43	36626,58	37269,15	38554,29	28273,15	23132,58	28915,72	59116,58
Reste	-11 772,17	37 233,87	47 267,13	6 880,34	29 040,06	32 441,97	32 921,68	34 258,76	23 750,90	18 213,72	-106 193,87	-106 236,28
Reste	-4 927,39	44 793,73	55 337,96	11 937,54	32 564,56	35 353,59	35 884,36	37 323,96	25 998,59	20 052,66	-103 895,32	-101 536,98
Reste	-21 872,79	26 077,83	35 357,46	-582,16	23 838,96	28 145,39	28 549,66	29 736,16	20 434,39	15 500,36	-109 585,62	-113 170,98
Reste	-19 283,40	28 937,87	38 410,60	1 331,00	25 172,33	29 246,89	29 670,55	30 895,53	21 284,53	16 195,78	-108 716,29	-111 393,25
Reste	-15 252,40	33 390,02	43 163,57	4 309,13	27 247,99	30 961,57	31 415,31	32 700,45	22 608,14	17 278,74	-107 362,60	-108 625,70

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 37 806,11 88 887,24 -37 571,36 -18 247,88 11 834,20

Tableau 36: Adéquation en année quinquennal sèche pour une projection de 50 ans des besoins(2065) selon la moyenne de deux méthodes pour le scenario d'émission RCP 8.5

* Adéquation en année quinquennal sèche pour une projection de 85 ans des besoins(2100)

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D
$C_t(l/s)$	5853,8	5287,3	5853,8	5665	5853,8	5665	5853,8	5853,8	5665	5853,8	5665	5853,8
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	91964,96	101573,23	108436,29	67944,26	47355,09	39119,42	39805,73	41178,34	30197,45	24707,00	30883,75	63140,12
Modele2	93 882,00	103 691,00	110 696,80	69 360,60	48 342,10	39 934,90	40 635,60	42 036,80	30 827,20	25 222,20	31 527,50	64 456,50
Modele3	99 280,30	109 652,60	117 061,60	73 348,70	51 121,90	42 231,00	42 971,90	44 453,90	32 599,50	26 672,30	33 340,30	68 162,40
Modele4	87794,07	96966,58	103518,38	64862,78	45207,39	37345,24	38000,42	39310,78	28827,90	23586,47	29483,08	60276,52
Modele5	79157,32	87427,49	93334,75	58481,90	40760,11	33671,39	34262,13	35443,58	25991,96	21266,15	26582,68	54346,82
Reste	-14 437,21	35 305,80	45 028,42	3 756,37	25 220,52	28 572,03	28 906,76	30 279,37	19 650,06	13 808,03	-110 276,94	-109 647,25
Reste	-12 520,17	37 423,57	47 288,93	5 172,71	26 207,53	29 387,51	29 736,63	31 137,83	20 279,81	14 323,23	-109 633,19	-108 330,87
Reste	-7 121,87	43 385,17	53 653,73	9 160,81	28 987,33	31 683,61	32 072,93	33 554,93	22 052,11	15 773,33	-107 820,39	-104 624,97
Reste	-18 608,10	30 699,15	40 110,51	674,89	23 072,82	26 797,85	27 101,45	28 411,81	18 280,51	12 687,50	-111 677,61	-112 510,85
Reste	-27 244,85	21 160,06	29 926,88	-5 705,99	18 625,54	23 124,00	23 363,16	24 544,61	15 444,57	10 367,18	-114 578,01	-118 440,55

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 -3 834,09 10 473,47 50 756,67 -34 960,12 -99 413,45

Tableau 37: Adéquation en année quinquennal sèche pour une projection de 85 ans des besoins(en 2100) selon la moyenne de deux méthodes pour le scenario d'émission RCP 4.5

Mois	J	F	M	Α	М	J	J	Α	S	0	N	D
$C_t(l/s)$	5853,8	5287,3	5853,8	5665	5853,8	5665	5853,8	5853,8	5665	5853,8	5665	5853,8
Be(l/s)	95503,2	56423,2	52508,9	53640,5	11235,6	0	0	0	0	0	130613,3	161888,4
Modele1	89584,826	98944,4347	105629,869	66185,8043	46129,4999	38106,9782	38775,5217	40112,6086	29415,913	24067,5652	30084,4565	61505,9999
Modele2	96 429,60	106 504,30	113 700,70	71 243,00	49 654,00	41 018,60	41 738,20	43 177,80	31 663,60	25 906,50	32 383,00	66 205,30
Modele3	79 484,20	87 788,40	93 720,20	58 723,30	40 928,40	33 810,40	34 403,50	35 590,00	26 099,40	21 354,20	26 692,70	54 571,30
Modele4	82073,59	90648,44	96773,34	60636,46	42261,77	34911,90	35524,39	36749,37	26949,54	22049,62	27562,03	56349,03
Modele5	86104,59	95100,59	101526,31	63614,59	44337,43	36626,58	37269,15	38554,29	28273,15	23132,58	28915,72	59116,58
Reste	-16 817,35	32 677,00	42 221,99	1 997,91	23 994,93	27 559,58	27 876,55	29 213,63	18 868,52	13 168,59	-111 076,24	-111 281,37
Reste	-9 972,57	40 236,87	50 292,83	7 055,11	27 519,43	30 471,21	30 839,23	32 278,83	21 116,21	15 007,53	-108 777,69	-106 582,07
Reste	-26 917,97	21 520,97	30 312,33	-5 464,59	18 793,83	23 263,01	23 504,53	24 691,03	15 552,01	10 455,23	-114 467,99	-118 216,07
Reste	-24 328,58	24 381,01	33 365,47	-3 551,43	20 127,20	24 364,51	24 625,42	25 850,40	16 402,15	11 150,65	-113 598,66	-116 438,34
Reste	-20 297,58	28 833,16	38 118,44	-573,30	22 202,86	26 079,19	26 370,18	27 655,32	17 725,76	12 233,61	-112 244,97	-113 670,79

Adéquation selon le modele1 Adéquation selon modele2 Adéquation selon modele3 Adéquation selon modele4 Adéquation selon modele5 -21 596,25 29 484,87 -96 973,73 -77 650,25 -47 568,17

Tableau 38: Adéquation en année quinquennal sèche pour une projection de 85 ans des besoins(en 2100) selon la moyenne de deux méthodes pour le scenario d'émission RCP 8.5

Pour ces résultats, d'ici 50 ans (tableau 30 et tableau 31) c'est-à-dire qu'en 2065, le scenario d'émission RCP 4.5 montre que les ressources sont encore excédentaires sur la fréquence quinquennale sèche par rapport aux besoins. Mais le problème d'eau au mois de Novembre, Décembre et Janvier, reste toujours déficitaire pour la projection des besoins. Pour le scenario RCP 8.5, deux modèles présentent que, l'eau ne suffira plus pour notre zone d'étude mais ce n'est pas encore le majorité des modèles que nous avons utilisé.

Par contre, en 2085 (tableau 32 et tableau 33), les ressources sont complètement insuffisantes par rapport aux besoins estimés, 60% des résultats confirment cette situation pour le scenario RCP 4.5 et 80% pour le scenario RCP8.5.

CONCLUSION

Cette étude, dont l'objectif était d'évaluer la potentialité des ressources en eau face au dynamisme climatique de la cuvette Alaotra, nous a conduit de tirer un certain nombre de conclusions concernant l'évolution du climat, des débits et du comportement hydrologique sur cette zone pour le futur proche (2021-2050) et lointain (2071-2100). L'évolution du climat pour ces deux périodes a été trouvée lors de l'application de la méthode de descente d'échelle ou méthode ADC sur la station pluviométrique d'Ambohitsilaozana.

Cette méthode a pour but de mettre à l'échelle du bassin versant les projections, issues des 5 modèles climatiques à l'échelle globale (qui ne tiennent pas des effets locaux), en fonction des deux scenarios, afin que nous puissions voir la variation des flux hydrologique.

Nos résultats montrent, en premier lieu, une augmentation de la température maximale mensuelle. Il existe des contradictions entre les différents MCG et RCP, mais tous s'accordent sur l'existence d'un réchauffement pour la période 2021-2050 et la 2071-2100, tandis que les résultats sont hétérogènes pour les précipitations mais nombreux projection montrent une diminution sauf les trois dernier mois de l'année.

Concernant l'évolution de débits, nous avons utilisé la méthode de la station de référence et la méthode CTGREF. Elle nous permet de transformer la précipitation issue de la projection (après l'ADC) en débit, en considérant le bassin tout entier. Le résultat nous montre donc que les apports annuels disponibles diminuent par rapport aux périodes 1981-2010.

Apres la simulation de l'accroissement de la population et après avoir effectué l'adéquation ressource-besoin, les mois de Novembre, Décembre et Janvier seront toujours des mois déficitaire. Ceci est valable même si l'année est excédentaire dans une fréquence quinquennale sèche à l'horizon de 2021-2050 pour les deux scenarios d'émissions considéré.

Pour le futur lointain, les ressources ne suffiront plus par rapport aux besoins considérés face à cette projection.

Ces études ont fourni des résultats importants et inédits sur la situation à venir des ressources dans le bassin versant Alaotra pour alerter les responsables. Dans une perspective de la réduction des incertitudes dans les résultats obtenus, d'autres méthodes peuvent être utilisées pour que les résultats puissent être comparés avec ceux des méthodes appliquées dans ce mémoire. Ceci peut les rendre plus affinés.

BIBLIOGRAPHIE et WEBOGRAPHIE

- [1] GIEC, Document technique VI, 2007
- [2] GIEC, 3ème rapport d'évaluation, 2001
- [3] CHAPERON P. DANLOUX J. FERRY L., 1993, « Fleuves et rivières de Madagascar, ORSTOM », Édition cédérom 2005.
- [4] CENTRE DE RECHERCHES, D'ETUDES ET D'APPUIIA L'ANALYSE ECONOMIQUE À MADAGASCAR « Monographie Région Alaotra Mangoro », février 2013.
- [5] Météo Malagasy « Atlas climatologique de Madagascar » mars 2014, 92
- [6] S.C.van Pelt, J. J. Beersma, T.A.Buishand, B.J.J.M.van den Hurk, and P.Kabat, Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations, Hydrology and Earth System Science, 2012
- [7] P. Kraaijenbrink, « Advanced Delta Change method, Extension of an application to CMIP5 GCMs », Internal repport Royal Netherlands Meteorological Institute, 2013, 88p.
- [8] Marc THIBAULT, Plan de Gestion de la Réserve Naturelle du Lac de Réghaïa (Algérie), Novembre 2006
- [9] Léon RANDRIANASOLO, Cours d'hydrologie 4^e année département météorologie, Ecole Supérieure Polytechnique d'Antananarivo, année universitaire 2011-2012.
- [10] Jean Donné RASOLOFONIAINA, « Formation dans le domaine de technique en matière de micro-périmètre irrigue (MPI) », Février 2003.
- [11] Madeleine NICOLAS, « Impact du changement climatique sur les débits du XXIè siècle en France : Une estimation avec les nouvelles projections du GIEC (CMIP5) et le modèle hydrologique de l'Irstea (GR) », Master 1 Sciences de l'Univers, Environnement, Ecologie Spécialité Environnements Continentaux et Hydro sciences UPMC, Juin 2014, 40p.
- [12] Pr Jamal ALIBOU, « Impacts des changements climatiques sur les Ressources en eau et les zones humides du Maroc », Octobre 2002.
- [13] GIEC, 4ème rapport d'évaluation, 2007
- [14] GIEC, 5ème rapport d'évaluation, 20013 2014
- [15] Contribution à la conception de l'Observatoire Régional du Lac Alaotra- Etat des lieux des informations nécessaires pour renseigner les indicateurs du projet d'OAM Madagascar (RAPPORT FINAL), Décembre 2011

- [16] http://www.enslyon.fr/Planet-Terre, 2015
- [17] <u>www.alertes-meteo.com</u>, 2015

ANNEXES

Annexe 1 : Liste des modèles utilisés pour l'application de la méthode ADC

Acronyme	Modèles	Institut
		Canadian Centre for Climate
CCCma	CCCma-CanESM2	Modelling and Analysis
		(Canada)
	ICHEC-EC-EARTH	Consortium EC-EARTH
EC-EARTH	(version modifiée par le	(UE, 11 pays)
	KNMI)	(OE, 11 pays)
		Japan Agency for Marine-
		Earth Science and
		Technology, Atmosphere
MIROC	MIROC-MIROC5	and Ocean Research Institute
WIROC		(The University of Tokyo),
		et le National Institute for
		Environmental Studies
		(Japon)
		Max Planck Institute for
MPI-M	MPI-M-MPI-ESM-LR	Meteorology (MPI-M)
		(Allemagne)
NCC	NCC-NorESM1-M	Norwegian Climate Centre
THE C	INCC-INDILLOIVIII-IVI	(Norvège)

Annexe 2: Calcul de l'évapotranspiration ou ETP selon Penman Monteith

Dans le mémoire, les valeurs ont été trouvées grâce au logiciel CROPWAT. Le développement théorique de la formule n'est pas présent.

Détails de calcul selon la formule de Penman :

Désignations	Janv.	Févr.	Mars	Avril	Mai	Juin	Juil	Août	Sept	Oct.	Nov.	Déc.
humidité en %	85	86	87	87	87	87	88	86	85	84	85	85
température en ℃	24,10	24,20	24,00	22,50	20,90	18,20	17,40	18,80	19,80	20,90	22,00	24,60
ea en mbar	29,90	30,00	29,80	26,70	24,80	20,80	19,60	21,80	23,20	24,80	26,40	30,70
ed=(ea*HR/100)	25,42	25,80	25,93	23,23	21,58	18,10	17,25	18,75	19,72	20,83	22,44	26,10
u en km/h	8,00	9,00	9,00	9,00	9,00	8,00	9,00	9,00	9,00	8,00	8,00	8,00
u en km/s	0,0022	0,0025	0,0025	0,0025	0,0025	0,0022	0,0025	0,0025	0,0025	0,0022	0,0022	0,0022
u en m/s	2,22	2,50	2,50	2,50	2,50	2,22	2,50	2,50	2,50	2,22	2,22	2,22
f(u)=0,35(1+0,54u)	0,70	0,74	0,74	0,74	0,74	0,70	0,74	0,74	0,74	0,70	0,70	0,70
n:durée d'insolation	7,82	7,16	6,82	7,10	6,84	6,07	6,10	7,08	7,76	7,57	7,50	7,44
N	11,10	11,55	12,00	12,55	13,00	13,40	13,10	12,70	12,25	11,75	11,30	11,00
n/N	0,70	0,62	0,57	0,57	0,53	0,45	0,47	0,56	0,63	0,64	0,66	0,68
Ra(mm/j)abaque	17,10	16,50	15,10	13,20	11,40	10,40	10,80	12,30	14,10	15,80	16,80	17,10
Rsformule	10,30	9,24	8,07	7,03	5,85	4,96	5,21	6,50	7,99	9,04	9,78	10,06
f(n/N)abaque	0,73	0,72	0,62	0,60	0,56	0,51	0,52	0,62	0,66	0,68	0,71	0,72
f(T)abaque	15,45	15,50	15,40	15,10	14,80	14,25	14,05	14,35	14,50	14,80	15,00	15,60
f(ed)abaque	0,10	0,09	0,10	0,11	0,12	0,13	0,13	0,14	0,12	0,12	0,12	0,11
Rnl(formule)	1,13	1,00	0,95	1,00	0,99	0,94	0,95	1,25	1,15	1,21	1,28	1,24
W	0,748	0,750	0,745	0,730	0,710	0,690	0,680	0,696	0,700	0,710	0,726	0,750
1-W	0,25	0,25	0,26	0,27	0,29	0,31	0,32	0,30	0,30	0,29	0,27	0,25
Rn=0,75Rs-Rnl	6,60	5,93	5,09	4,28	3,39	2,77	2,96	3,63	4,84	5,57	6,05	6,31
ea-ed	4,49	4,20	3,87	3,47	3,22	2,70	2,35	3,05	3,48	3,97	3,96	4,61
(1-W)*f(u)*(ea-ed)	0,79	0,78	0,73	0,70	0,70	0,59	0,56	0,69	0,78	0,81	0,76	0,81
ETP(mm/jour)	5,72	5,22	4,53	3,82	3,10	2,50	2,57	3,22	4,17	4,76	5,15	5,54
	31	28	31	30	31	30	31	31	30	31	30	31
ETP en mm	177	146	140	115	96	75	80	100	125	148	155	172

Annexe 3 : Détermination des caractéristiques du BV

Les surfaces et les périmètres du bassin versant lors de cette etude sont des résultats obtenus lors des planimetrages réalisés sur MapInfo.

-Valeurs des coefficients de Gravelius ce coefficient définit la forme du bassin versant

$$K = \frac{0.28P}{\frac{1}{5^2}}$$

P: périmètre du BV

S: surface du BV

Le bassin versant peut être allonge (K>>1) ou de forme ramassée (K~1).

Valeurs des rectangles équivalents :

-Longueur

$$L = \frac{K\sqrt{S}}{1.12} \left[1 + \sqrt{1 - \left(\frac{1.12}{K}\right)^2} \right]$$

-Largeur

$$l = \frac{P}{2} - L$$

Présentation des altitudes et pente moyenne des bassins versants :

La pente moyenne est donnée par :

$$I = \frac{D}{L}$$

Avec
$$D = 0.95(Z_{max} - Z_{min})$$

Où Z_{max} : Altitude max du BV ; Z_{min} : Altitude min du BV

	Superficie en km²	Périmètre en km	K	Longueur (km)	Largeur (km)	Altitude max	Altitude min	Dénivelée en m	Altitude moyenne	Pente en m/km	Forme du BV
Lakana	266	106,6	1,83	47,7	5,6	1 259	800	436,05	1029,5	9,1	allongée
Bv Ambato	133,3	52,1	1,26	19,1	7	1119	800	303,05	959,5	15,9	allongée
Manamontana	91,8	43,7	1,28	16,2	5,7	1446	800	613,7	1123	37,9	allongée
Anony	1548,3	191	1,36	74,8	20,7	1100	800	285	950	3,8	allongée
Andragorona	116	46,2	1,2	15,8	7,4	1100	800	285	950	18,0	allongée
Lovoka	221,2	74	1,39	29,5	7,5	1400	800	570	1100	19,3	allongée
Ampandranovy	37,5	27,7	1,27	10,1	3,7	1100	800	285	950	28,2	allongée
Sasomangana	290	93,2	1,53	39,2	7,4	1400	800	570	1100	14,5	allongée
Sahamilahy	228,1	74,6	1,38	29,6	7,7	1400	800	570	1100	19,3	allongée
Sahabe	1045	188,5	1,63	81,4	12,8	1400	799	570,95	1099,5	7,0	allongée
Ranofotsy	330,8	81	1,25	29,1	11,4	1200	800	380	1000	13,1	allongée
Ambatoharanana	37,1	25,1	1,15	7,8	4,8	900	800	95	850	12,2	ramassée
lmamba	81,4	42,5	1,32	16,3	5	1100	800	285	950	17,5	allongée
Ivakaka	188,3	73,7	1,5	30,7	6,1	1300	800	475	1050	15,5	allongée
Bemarenina	40,6	32,9	1,44	13,4	3	1000	800	190	900	14,2	allongée
Sahamaloto	335,6	102,5	1,57	43,6	7,7	1210	800	389,5	1005	8,9	allongée
Amboavory	79,4	35,5	1,12	8,9	8,9	1000	800	190	900	21,3	allongée
Ampasimena	164,7	73,7	1,61	31,7	5,2	1200	800	380	1000	12,0	allongée
Reste Bv	1508,5	106,6	3,8	250,4	9,95	1 000	751	236,55	875,5	0,9	allongée

Annexe 4: Ajustement statistique des valeurs brutes des pluies mensuelles interannuelles par loi normale

C'est une loi de probabilité continue la plus courante et la plus importante du fait qu'elle offre une répartition symétrique de part et d'autre de la moyenne.

La loi normale est :

$$u_F = \frac{P_F - P_{moy}}{\sigma}$$

 u_F : Valeur donné dans un abaque

Pour une période de 5 ans $u_F = 0.84$

Pour une période de 10 ans $u_F = 1,28$

La pluie moyenne de fréquence F est donnée donc par la formule :

$$P_F = P_{mov} + / -u_F$$
. σ

Avec:

 P_{moy} : La précipitation moyenne mensuelle exprime en mm

 σ : Écart type

+ /-: selon que l'année considérer sèche ou humide

Pluie mensuelle de fréquence f par chaque sous bassin versant

L'indice « s » sert indiquer les années de fréquence sèche,

L'indice « h » pour l'année humide

PERIODE FUTUR PROCHE (2021-2050)

Modèle : CCCma-CanESM2

Pour le scenario RCP 4.5

Pério	des	J	F	M	Α	M	J	J	Α	S	0	N	D
10	S	189,5126	122,111	45,647329	18,6538	17,3765	18,238654	18,56403	16,0881658	19,034906	48,387372	115,960343	209,629
59	5	213,8721	137,8068	51,514712	21,0515	19,6101	20,583001	20,950199	18,1560947	21,481601	54,606952	130,865569	236,574
2		260,3765	167,7715	62,71608	25,629	23,8741	25,058572	25,505614	22,103959	26,152563	66,480697	159,321	288,015
5ł	า	306,8808	197,7362	73,917448	30,2064	28,1381	29,534144	30,061029	26,0518233	30,823526	78,354442	187,776432	339,456
10	h	331,2403	213,432	79,784831	32,6042	30,3716	31,87849	32,447199	28,1197522	33,270221	84,574023	202,681658	366,401

Pour le scenario RCP 8.5

F	Périodes	J	F	M	Α	М	J	J	Α	S	0	N	D
	10s	180,4309	129,103	54,604508	21,2873	19,272	21,263915	20,485356	17,8815219	15,886337	32,272481	100,566471	194,487
	5s	203,6854	145,7422	61,642138	24,0309	21,7559	24,004487	23,125584	20,1861584	17,933826	36,431878	113,52785	219,554
	2	248,0806	177,5081	75,077615	29,2687	26,4978	29,236488	28,16602	24,5859191	21,84267	44,372544	138,272299	267,407
	5h	292,4757	209,274	88,513092	34,5064	31,2397	34,468489	33,206456	28,9856798	25,751514	52,31321	163,016748	315,261
	10h	315,7303	225,9133	95,550722	37,25	33,7235	37,209061	35,846684	31,2903164	27,799004	56,472607	175,978126	340,327

Modèle ICHEC-EC-EARTH

Pour le scenario RCP 4.5

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	179,8045	134,5871	63,480936	26,2409	19,6586	21,002121	24,112036	23,0122605	14,798683	28,953675	96,4722161	186,599
5s	202,9784	151,9332	71,662598	29,6229	22,1923	23,708954	27,219686	25,9781676	16,705993	32,685334	108,90592	210,649
2	247,2195	185,0485	87,282137	36,0795	27,0293	28,876544	33,152473	31,6403539	20,347222	39,80941	132,642991	256,562
5h	291,4605	218,1638	102,90168	42,5361	31,8663	34,044133	39,08526	37,3025402	23,98845	46,933486	156,380062	302,475
10h	314,6344	235,5099	111,08334	45,9182	34,4	36,750966	42,192911	40,2684474	25,895761	50,665145	168,813766	326,525

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	205,6566	153,7758	76,56191	41,487	36,6257	30,37583	28,254248	20,6849493	19,13917	29,018098	92,5493987	198,931
5s	230,0122	171,9872	85,629012	46,4003	40,9632	33,97319	31,600353	23,1346341	21,40579	32,454664	103,509873	222,49
2	276,5092	206,7545	102,93893	55,7801	49,244	40,840877	37,98837	27,8113049	25,732975	39,015381	124,434414	267,466
5h	323,0062	241,5217	120,24885	65,1599	57,5247	47,708564	44,376388	32,4879757	30,06016	45,576098	145,358955	312,443
10h	347,3618	259,7331	129,31596	70,0731	61,8622	51,305924	47,722492	34,9376605	32,326781	49,012664	156,319429	336,002

Modèle MIROC-MIROC5

Pour le scenario RCP 4.5

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	186,3918	123,4839	45,930453	16,7601	19,1345	23,28945	22,084171	19,3830565	18,783594	34,945077	108,363234	208,579
5s	209,8849	139,0481	51,719605	18,8725	21,5463	26,224891	24,867697	21,8261294	21,15111	39,349613	122,021517	234,868
2	254,7355	168,7614	62,771621	22,9054	26,1505	31,828915	30,181701	26,4901778	25,670913	47,758273	148,096423	285,058
5h	299,586	198,4747	73,823637	26,9383	30,7547	37,43294	35,495705	31,1542261	30,190716	56,166933	174,171328	335,247
10h	323,0791	214,0389	79,612789	29,0508	33,1665	40,368381	38,27923	33,5972991	32,558232	60,571469	187,829612	361,537

Pour le scenario RCP 8.5

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
1 0s	165,9126	113,7357	46,09127	16,9721	15,4921	19,523082	20,422589	16,568194	18,695949	35,781074	112,679453	202,545
5s	188,2082	129,0197	52,285096	19,2528	17,574	22,146628	23,167012	18,7946571	21,208343	40,589397	127,821516	229,764
2	230,7726	158,1983	64,109673	23,607	21,5485	27,155217	28,406366	23,0451775	26,004733	49,768924	156,729092	281,726
5h	273,337	187,3768	75,93425	27,9611	25,5229	32,163805	33,64572	27,2956979	30,801122	58,948451	185,636667	333,688
10h	295,6326	202,6608	82,128077	30,2419	27,6048	34,787351	36,390143	29,522161	33,313517	63,756775	200,77873	360,907

Modèle MPI-M-MPI-ESM-LR

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	193,9238	136,9382	61,41582	25,2428	17,1616	20,446099	23,355616	23,5830929	20,236683	23,356373	93,4565642	198,892
5s	220,8618	155,9603	69,947088	28,7493	19,5455	23,286266	26,599943	26,8590193	23,04776	26,600805	106,438612	226,52
2	272,2888	192,2752	86,234056	35,4435	24,0966	28,708402	32,793659	33,1130607	28,414361	32,794723	131,22252	279,265
5h	323,7157	228,5901	102,52102	42,1377	28,6477	34,130539	38,987376	39,3671021	33,780962	38,98864	156,006429	332,009
10h	350,6537	247,6122	111,05229	45,6442	31,0316	36,970705	42,231703	42,6430285	36,592039	42,233072	168,988476	359,638

Pour le scenario RCP 8.5

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	197,2895	141,2858	60,491359	23,3934	19,2837	24,578961	25,390966	24,8010505	21,99986	19,718714	81,6439021	183,912
5s	219,9512	157,5146	67,439715	26,0805	21,4988	27,40223	28,307506	27,64983	24,52688	21,98371	91,0219513	205,038
2	263,2145	188,4969	80,704759	31,2105	25,7275	32,792107	33,875447	33,0884089	29,351191	26,307792	108,9255	245,367
5h	306,4778	219,4792	93,969803	36,3404	29,9562	38,181985	39,443387	38,5269879	34,175502	30,631874	126,829048	285,697
1 0h	329,1395	235,708	100,91816	39,0275	32,1712	41,005254	42,359927	41,3757674	36,702521	32,89687	136,207097	306,822

Modèle NCC-NorESM1-M

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	158,2556	113,0088	47,781394	17,9825	14,2322	18,097468	20,11176	15,9670422	17,197003	26,324851	86,1464318	175,889
5s	182,992	130,6728	55,249943	20,7933	16,4568	20,926222	23,255362	18,462797	19,885009	30,4396	99,6116919	203,381
2	230,216	164,395	69,508083	26,1594	20,7037	26,326572	29,256783	23,2274199	25,016657	38,295031	125,318098	255,867
5h	277,4401	198,1172	83,766223	31,5254	24,9506	31,726922	35,258205	27,9920428	30,148305	46,150461	151,024503	308,353
10h	302,1765	215,7812	91,234773	34,3362	27,1752	34,555676	38,401807	30,4877977	32,836311	50,26521	164,489763	335,845

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	170,5516	120,3624	47,904902	17,1345	15,0095	18,910712	21,052641	17,3168952	18,279532	29,56486	88,9026228	180,055
5s	195,7851	138,1703	54,992524	19,6695	17,2302	21,708589	24,167419	19,878963	20,984024	33,939038	102,055936	206,695
2	243,958	172,1671	68,523439	24,5092	21,4697	27,049988	30,113815	24,7701833	26,147145	42,289741	127,166806	257,552
5h	292,1309	206,1639	82,054353	29,3489	25,7092	32,391388	36,06021	29,6614036	31,310265	50,640444	152,277677	308,41
10h	317,3644	223,9717	89,141975	31,884	27,9299	35,189264	39,174988	32,2234714	34,014757	55,014621	165,43099	335,049

PERIODE FUTUR LOINTAIN (2071-2100)

Modèle : CCCma-CanESM2

Pour le scenario RCP 4.5

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	159,3258	96,50544	34,340424	15,6828	17,564	19,123918	16,225608	15,7858397	40,566278	87,822328	148,350754	214,889
5s	180,8679	109,5537	38,983513	17,8032	19,9387	21,709618	18,419435	17,9202061	46,05115	99,696579	168,408912	243,944
2	221,9936	134,4641	47,84759	21,8513	24,4724	26,645955	22,607649	21,9949057	56,522268	122,3656	206,701759	299,412
5h	263,1194	159,3744	56,711668	25,8994	29,0061	31,582292	26,795863	26,0696052	66,993387	145,03463	244,994606	354,88
10h	284,6615	172,4227	61,354756	28,0199	31,3809	34,167992	28,98969	28,2039716	72,478258	156,90888	265,052764	383,935

Pour le scenario RCP 8.5

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	184,6233	132,4844	63,909794	29,6165	24,3019	30,476795	28,232328	17,7064973	13,990373	30,754831	102,198981	200,701
5s	208,04	149,2881	72,015818	33,3729	27,3842	34,342331	31,813186	19,9523077	15,764847	34,655632	115,161428	226,157
2	252,7448	181,3679	87,490953	40,5442	33,2686	41,721991	38,64937	24,239764	19,15248	42,102616	139,907918	274,755
5h	297,4495	213,4477	102,96609	47,7156	39,1531	49,101651	45,485553	28,5272202	22,540113	49,549599	164,654408	323,353
10h	320,8662	230,2515	111,07211	51,472	42,2354	52,967187	49,066412	30,7730306	24,314587	53,4504	177,616855	348,809

Modèle ICHEC-EC-EARTH

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	192,4954	143,2401	69,857416	34,5673	31,0613	30,775032	27,704218	20,5450291	17,890398	33,616153	103,267656	203,142
5 s	215,7059	160,5115	78,280608	38,7353	34,8066	34,48579	31,044707	23,0222854	20,047567	37,669485	115,719352	227,636
2	260,0169	193,4843	94,361247	46,6925	41,9566	41,569966	37,422005	27,751593	24,165799	45,407665	139,490772	274,398
5h	304,3278	226,457	110,44189	54,6496	49,1067	48,654141	43,799303	32,4809006	28,284031	53,145845	163,262191	321,159
10h	327,5384	243,7285	118,86508	58,8176	52,852	52,3649	47,139792	34,958157	30,4412	57,199177	175,713887	345,654

Pour le scenario RCP 8.5

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	167,588	128,8062	56,566739	21,4874	16,2063	16,556902	17,787489	16,5406426	10,699737	20,281747	82,5117266	168,095
5s	190,9459	146,7589	64,450858	24,4822	18,4651	18,864558	20,266661	18,8460326	12,191037	23,108562	94,0119879	191,524
2	235,5384	181,0321	79,502358	30,1996	22,7773	23,270083	24,999626	23,2472318	15,038065	28,505209	115,967032	236,252
5h	280,1309	215,3054	94,553857	35,9171	27,0895	27,675609	29,732591	27,6484309	17,885093	33,901856	137,922076	280,979
10h	303,4888	233,2581	102,43798	38,9119	29,3483	29,983265	32,211763	29,953821	19,376394	36,728671	149,422338	304,408

Modèle MIROC-MIROC5

Pour le scenario RCP 4.5

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	177,8152	135,9507	59,630222	22,9799	16,901	17,375265	18,128716	17,8370754	14,185821	22,798224	84,8439397	174,529
5s	201,2922	153,9003	67,503235	26,014	19,1325	19,669332	20,522262	20,1921151	16,058783	25,808287	96,0459355	197,572
2	246,112	188,1678	82,533534	31,8063	23,3925	24,048913	25,091757	24,6880999	19,634439	31,554771	117,431564	241,563
5h	290,9318	222,4353	97,563833	37,5985	27,6525	28,428495	29,661252	29,1840847	23,210094	37,301255	138,817192	285,555
10h	314,4089	240,385	105,43685	40,6326	29,884	30,722561	32,054797	31,5391243	25,083057	40,311318	150,019188	308,598

Périodes	J	F	M	Α	M	J	7	Α	S	0	N	D
10s	145,1962	76,41288	21,356853	11,4055	11,7904	10,850951	9,8548439	10,3979253	14,866163	34,978636	110,3538	199,433
5s	172,1976	90,623	25,328479	13,5266	13,983	12,868848	11,6875	12,3315753	17,630749	41,483437	130,875742	236,521
2	223,7457	117,7514	32,910676	17,5758	18,1689	16,721197	15,186206	16,0230888	22,908594	53,901694	170,053995	307,324
5h	275,2939	144,8798	40,492872	21,625	22,3548	20,573545	18,684913	19,7146023	28,18644	66,319951	209,232248	378,128
10h	302,2953	159,0899	44,464499	23,7461	24,5474	22,591442	20,517569	21,6482523	30,951025	72,824752	229,75419	415,216

Modèle MPI-M-MPI-ESM-LR

Pour le scenario RCP 4.5

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10 s	180,5459	143,5494	65,767435	25,7363	18,001	21,105987	22,880723	22,0042418	19,821503	17,809409	76,5239866	170,672
5s	205,3964	163,3077	74,819704	29,2787	20,4787	24,011027	26,030039	25,0329188	22,549746	20,260706	87,0567937	194,164
2	252,8381	201,0279	92,101309	36,0413	25,2088	29,557014	32,042371	30,8149385	27,758211	24,940456	107,16488	239,011
5h	300,2799	238,7482	109,38291	42,804	29,9389	35,103	38,054702	36,5969581	32,966676	29,620206	127,272966	283,859
10h	325,1304	258,5064	118,43518	46,3464	32,4165	38,008041	41,204018	39,6256351	35,694919	32,071504	137,805774	307,35

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	175,3022	127,6071	51,832995	18,4187	12,6662	16,71259	18,242759	18,1612935	16,082371	16,509424	73,0769422	171,299
5s	203,1016	147,843	60,052672	21,3395	14,6748	19,362873	21,135696	21,041312	18,632714	19,127489	84,6654859	198,463
2	256,1732	186,4753	75,744785	26,9157	18,5094	24,422504	26,658577	26,5395291	23,50155	24,125613	106,789069	250,323
5h	309,2448	225,1075	91,436897	32,4918	22,3441	29,482135	32,181457	32,0377462	28,370387	29,123737	128,912653	302,183
10h	337,0443	245,3434	99,656575	35,4127	24,3527	32,132418	35,074394	34,9177647	30,920729	31,741801	140,501197	329,347

Modèle NCC-NorESM1-M

Pour le scenario RCP 4.5

Période	S J	F	М	Α	M	J	J	Α	S	0	N	D
10s	139,9652	86,35768	29,996741	11,1559	11,6398	16,358489	16,894526	15,5616689	23,843272	41,965315	103,948718	180,568
5s	164,2831	101,3616	35,208438	13,0942	13,6621	19,200647	19,829816	18,265386	27,985853	49,256458	122,008987	211,941
2	210,708	130,0056	45,158041	16,7945	17,5229	24,626585	25,433552	23,4270277	35,894415	63,175911	156,487683	271,833
5h	257,133	158,6495	55,107644	20,4948	21,3837	30,052524	31,037288	28,5886695	43,802977	77,095364	190,966378	331,726
10h	281,4509	173,6535	60,319341	22,4331	23,4061	32,894682	33,972579	31,2923865	47,945558	84,386506	209,026647	363,098

Périodes	J	F	M	Α	M	J	J	Α	S	0	N	D
10s	209,4869	114,0047	33,010431	10,4552	13,8792	19,063606	16,720822	13,8713847	16,281586	33,665885	126,846308	266,825
5s	175,2721	95,38474	27,618949	8,7476	11,6123	15,950012	13,989866	11,6058183	13,62237	28,167349	106,128929	223,246
2	274,8061	149,552	43,303261	13,7152	18,2068	25,007741	21,934464	18,1965569	21,358272	44,163088	166,397667	350,023
5h	340,1252	185,0993	53,596091	16,9752	22,5344	30,951876	27,148106	22,5217291	26,434958	54,660292	205,949027	433,221
10h	374,34	203,7193	58,987573	18,6828	24,8012	34,06547	29,879061	24,7872955	29,094175	60,158827	226,666406	476,8

Annexe 5 : Calcul des apports de différentes fréquences pour chaque sous bassin par la méthode station de référence

Dassin versants		Sèc	che		Moyenne		Hun	nide	
Bassin versants	50	20	10	5	2	5	10	20	50
Lakana	1170,40	851,20	1463,00	1862,00	2766,40	3857,00	4548,60	5160,40	5931,80
Bv Ambato	586,52	426,56	733,15	933,10	1386,32	1932,85	2279,43	2586,02	2972,59
Manamontana	403,92	293,76	504,90	642,60	954,72	1331,10	1569,78	1780,92	2047,14
Anony	6812,52	4954,56	8515,65	10838,10	16102,32	22450,35	26475,93	30037,02	34527,09
Andragorona	510,40	371,20	638,00	812,00	1206,40	1682,00	1983,60	2250,40	2586,80
Lovoka	973,28	707,84	1216,60	1548,40	2300,48	3207,40	3782,52	4291,28	4932,76
Ampandranovy	165,00	120,00	206,25	262,50	390,00	543,75	641,25	727,50	836,25
Sasomangana	1276,00	928,00	1595,00	2030,00	3016,00	4205,00	4959,00	5626,00	6467,00
Sahamilahy	1003,64	729,92	1254,55	1596,70	2372,24	3307,45	3900,51	4425,14	5086,63
Sahabe	4598,00	3344,00	5747,50	7315,00	10868,00	15152,50	17869,50	20273,00	23303,50
Ranofotsy	1455,52	1058,56	1819,40	2315,60	3440,32	4796,60	5656,68	6417,52	7376,84
Ambatoharanana	163,24	118,72	204,05	259,70	385,84	537,95	634,41	719,74	827,33
Imamba	358,16	260,48	447,70	569,80	846,56	1180,30	1391,94	1579,16	1815,22
Ivakaka	828,52	602,56	1035,65	1318,10	1958,32	2730,35	3219,93	3653,02	4199,09
Bemarenina	178,64	129,92	223,30	284,20	422,24	588,70	694,26	787,64	905,38
Sahamaloto	1476,64	1073,92	1845,80	2349,20	3490,24	4866,20	5738,76	6510,64	7483,88
Amboavory	349,36	254,08	436,70	555,80	825,76	1151,30	1357,74	1540,36	1770,62
Ampasimena	724,68	527,04	905,85	1152,90	1712,88	2388,15	2816,37	3195,18	3672,81
Reste Bv	6637,40	4827,20	8296,75	10559,50	15688,40	21873,25	25795,35	29264,90	33639,55

Annexe 6 : Calcul des apports de différentes fréquences pour chaque sous bassin par la méthode CTGREF

C'est le résultat du premier modèle climatique seul que nous avons affiché ici pour les deux périodes et les deux scenarios (modèle : CCCma-CanESM2)

PERIODE FUTUR PROCHE (2021-2050)

Bassin versants		Sèc	che		Moyenne		Hun	nide	
Dassiii versaires	50	20	10	5	2	5	10	20	50
Lakana	1465,39	2005,92	2240,76	2741,08	3804,83	5003,59	5682,91	6035,43	6953,42
Bv Ambato	717,31	981,90	1096,86	1341,77	1862,47	2449,27	2781,80	2954,36	3403,72
Manamontana	520,60	712,62	796,05	973,80	1351,70	1777,57	2018,91	2144,14	2470,27
Anony	8304,12	11367,21	12697,99	15533,22	21561,27	28354,44	32204,02	34201,68	39403,77
Andragorona	622,15	851,64	951,34	1163,76	1615,39	2124,34	2412,75	2562,42	2952,17
Lovoka	1245,80	1705,32	1904,97	2330,32	3234,65	4253,77	4831,29	5130,98	5911,41
Ampandranovy	201,13	275,32	307,55	376,22	522,22	686,75	779,98	828,37	954,36
Sasomangana	1633,28	2235,73	2497,47	3055,11	4240,73	5576,82	6333,97	6726,87	7750,04
Sahamilahy	1284,66	1758,52	1964,39	2403,01	3335,55	4386,46	4981,99	5291,03	6095,80
Sahabe	5884,54	8055,12	8998,16	11007,28	15278,92	20092,75	22820,67	24236,27	27922,62
Ranofotsy	1804,80	2470,53	2759,76	3375,96	4686,09	6162,50	6999,16	7433,33	8563,94
Ambatoharanana	191,74	262,46	293,19	358,66	497,84	654,69	743,58	789,70	909,82
Imamba	436,58	597,62	667,58	816,64	1133,56	1490,70	1693,09	1798,11	2071,61
Ivakaka	1044,19	1429,35	1596,68	1953,19	2711,18	3565,37	4049,43	4300,62	4954,75
Bemarenina	213,86	292,75	327,02	400,04	555,29	730,24	829,38	880,83	1014,80
Sahamaloto	1834,04	2510,55	2804,46	3430,65	4761,99	6262,32	7112,53	7553,74	8702,66
Amboavory	418,25	572,52	639,55	782,35	1085,96	1428,10	1621,99	1722,61	1984,61
Ampasimena	898,58	1230,04	1374,04	1680,84	2333,13	3068,21	3484,77	3700,93	4263,85
Reste Bv	7873,38	10777,59	12039,34	14727,51	20442,88	26883,69	30533,58	32427,63	37359,88

Passin varsant		Sèc	che		Moyenne		Hun	nide	
Bassin versant	50	20	10	5	2	5	10	20	50
Lakana	1372,62	1880,80	2101,64	2572,21	3572,96	4700,99	5340,32	5672,10	6536,15
Bv Ambato	671,90	920,66	1028,76	1259,10	1748,97	2301,15	2614,10	2776,51	3199,46
Manamontana	487,64	668,17	746,63	913,80	1269,33	1670,07	1897,20	2015,07	2322,03
Anony	7778,38	10658,15	11909,60	14576,25	20247,29	26639,66	30262,59	32142,75	37039,15
Andragorona	582,76	798,52	892,28	1092,07	1516,95	1995,87	2267,30	2408,16	2775,01
Lovoka	1166,92	1598,95	1786,69	2186,75	3037,53	3996,52	4540,03	4822,10	5556,66
Ampandranovy	188,39	258,14	288,45	353,04	490,39	645,22	732,96	778,50	897,09
Sasomangana	1529,87	2096,27	2342,41	2866,89	3982,29	5239,56	5952,13	6321,92	7284,96
Sahamilahy	1203,32	1648,83	1842,43	2254,96	3132,28	4121,18	4681,65	4972,52	5729,99
Sahabe	5511,98	7552,66	8439,47	10329,14	14347,80	18877,61	21444,93	22777,26	26246,98
Ranofotsy	1690,54	2316,42	2588,41	3167,97	4400,51	5789,81	6577,21	6985,84	8050,02
Ambatoharanana	179,60	246,09	274,99	336,56	467,50	615,10	698,75	742,16	855,22
Imamba	408,94	560,34	626,13	766,33	1064,48	1400,55	1591,02	1689,87	1947,29
Ivakaka	978,08	1340,19	1497,55	1832,86	2545,96	3349,75	3805,31	4041,73	4657,41
Bemarenina	200,32	274,49	306,72	375,40	521,45	686,08	779,38	827,80	953,90
Sahamaloto	1717,92	2353,94	2630,34	3219,29	4471,79	5883,60	6683,75	7099,00	8180,42
Amboavory	391,77	536,81	599,84	734,15	1019,78	1341,74	1524,21	1618,91	1865,52
Ampasimena	841,69	1153,31	1288,73	1577,28	2190,94	2882,65	3274,69	3478,14	4007,97
Reste Bv	7374,92	10105,30	11291,84	13820,17	19197,06	25257,85	28692,86	30475,50	35117,92

PERIODE FUTUR PROCHE (2071-2100)

Bassin versants	Sèche				Moyenne		Hun	nide	
	50	20	10	5	2	5	10	20	50
Lakana	1506,17	2102,00	2362,10	2918,04	4105,72	5450,17	6213,98	6610,78	7645,24
Bv Ambato	737,27	1028,93	1156,26	1428,39	2009,76	2667,87	3041,76	3235,99	3742,36
Manamontana	535,08	746,76	839,16	1036,66	1458,60	1936,23	2207,58	2348,54	2716,04
Anony	8535,18	11911,66	13385,61	16536,00	23266,39	30885,14	35213,51	37462,08	43324,17
Andragorona	639,46	892,43	1002,86	1238,89	1743,14	2313,94	2638,23	2806,69	3245,88
Lovoka	1280,46	1787,00	2008,13	2480,75	3490,45	4633,43	5282,78	5620,11	6499,55
Ampandranovy	206,72	288,50	324,20	400,50	563,51	748,04	852,88	907,34	1049,32
Sasomangana	1678,72	2342,82	2632,72	3252,34	4576,09	6074,57	6925,88	7368,14	8521,11
Sahamilahy	1320,40	1842,75	2070,77	2558,14	3599,33	4777,96	5447,57	5795,42	6702,29
Sahabe	6048,27	8440,94	9485,42	11717,88	16487,22	21886,08	24953,28	26546,68	30700,72
Ranofotsy	1855,02	2588,86	2909,20	3593,90	5056,67	6712,52	7653,24	8141,94	9415,99
Ambatoharanana	197,07	275,04	309,07	381,81	537,21	713,13	813,07	864,99	1000,34
Imamba	448,73	626,24	703,73	869,36	1223,20	1623,75	1851,31	1969,52	2277,72
Ivakaka	1073,24	1497,81	1683,15	2079,29	2925,59	3883,59	4427,85	4710,59	5447,71
Bemarenina	219,81	306,77	344,73	425,87	599,20	795,41	906,89	964,80	1115,77
Sahamaloto	1885,07	2630,79	2956,33	3652,12	5138,58	6821,25	7777,21	8273,82	9568,52
Amboavory	429,88	599,94	674,18	832,85	1171,84	1555,56	1773,57	1886,82	2182,07
Ampasimena	923,58	1288,95	1448,45	1789,35	2517,64	3342,05	3810,42	4053,74	4688,07
Reste Bv	8092,45	11293,80	12691,30	15678,27	22059,55	29283,12	33386,97	35518,91	41076,93

Bassin versants	Sèche				Moyenne	Humide			
Dassiii versaiits	50	20	10	5	2	5	10	20	50
Lakana	1533,22	2088,55	2329,53	2842,52	3931,84	5157,99	5852,37	6212,60	7150,40
Bv Ambato	750,51	1022,35	1140,31	1391,42	1924,64	2524,85	2864,75	3041,08	3500,14
Manamontana	544,69	741,98	827,59	1009,83	1396,82	1832,42	2079,11	2207,09	2540,25
Anony	8688,47	11835,46	13201,05	16108,03	22281,00	29229,39	33164,32	35205,69	40520,04
Andragorona	650,95	886,72	989,03	1206,83	1669,31	2189,89	2484,70	2637,64	3035,80
Lovoka	1303,46	1775,57	1980,44	2416,55	3342,63	4385,03	4975,36	5281,61	6078,87
Ampandranovy	210,44	286,66	319,73	390,14	539,65	707,94	803,24	852,69	981,40
Sasomangana	1708,87	2327,83	2596,42	3168,17	4382,28	5748,91	6522,84	6924,35	7969,59
Sahamilahy	1344,11	1830,96	2042,22	2491,93	3446,89	4521,82	5130,55	5446,36	6268,49
Sahabe	6156,89	8386,94	9354,63	11414,61	15788,94	20712,77	23501,17	24947,75	28713,64
Ranofotsy	1888,33	2572,30	2869,09	3500,89	4842,51	6352,66	7207,87	7651,54	8806,55
Ambatoharanana	200,61	273,28	304,81	371,93	514,46	674,90	765,75	812,89	935,59
Imamba	456,79	622,23	694,03	846,86	1171,40	1536,70	1743,57	1850,90	2130,29
Ivakaka	1092,51	1488,23	1659,94	2025,47	2801,68	3675,39	4170,18	4426,87	5095,11
Bemarenina	223,76	304,81	339,98	414,85	573,82	752,77	854,11	906,69	1043,55
Sahamaloto	1918,92	2613,96	2915,57	3557,60	4920,95	6455,56	7324,63	7775,48	8949,20
Amboavory	437,60	596,11	664,89	811,30	1122,21	1472,17	1670,36	1773,17	2040,84
Ampasimena	940,17	1280,70	1428,47	1743,04	2411,01	3162,89	3588,68	3809,58	4384,64
Reste Bv	8237,79	11221,55	12516,31	15272,51	21125,27	27713,25	31444,08	33379,56	38418,25

Annexe 7 : Calcul du dfc pour le bassin du lac Alaotra

Riz de saison :

mois	Nov	Déc	Janv	Févr	Mars	Avr	Mai
P5s(mm)	74,5	156,5	220,5	186,8	138,1	33,1	9,8
0,8*P5s	59,6	125,2	176,4	149,4	110,5	26,5	7,8
Pe (mm)	59,6	100,0	100,0	100,0	100,0	26,5	7,8
ETP(mm)	155	172	177	146	140	115	96
Kc	1,1	1,1	1,05	1	0,95	0,8	
Kc pondéré	0,7333	1,1000	1,0667	1,0167	0,9667	0,8500	0,2667
Bp (mm)	53,8	88,8	89,3	48,7	35,8	70,9	17,8
MB (mm)	100,0	50,0					
RP (mm)	66,7	33,3					
Assec (mm)		66,7	33,3				
Entretien(mm)			33,3	50,0	50,0	50,0	16,7
BN(mm)	220,4	238,8	156,0	98,7	85,8	87,6	17,8
BN(m3/ha)	2 204	2 388	1 560	987	858	876	178
BB (m3/ha)	4 408	4 776	3 119	1 975	1 715	1 752	355
dfc (I/s/ha)	1,65	1,97	1,16	0,76	0,64	0,68	0,14

Surface irriguée : 82 000 ha

Efficience 0,5

Volume d'eau utilisé :

Mois	J	F	M	Α	M	N	D
Dose agricole (I/s)	95503,14777	56423,2228	52508,8945	53640,4536	11235,5985	130613,313	161888,434

Annexe 8 : <u>Projection de nombre et consommation des populations dans le bassin</u> <u>versant Alaotra</u>

	Nombre en 2025	Nombre en 2035	Nombre en 2045	Nombre en 2065	Nombre en 2085
Population	1 030 102	1 400 331	1904847	3531369	10463015
Consommation total (I/j)	12633,982	17174,754	23362,5364	68924,2998	128326,631

TABLE DES MATIERES

REMERCIEMENTS	i
SOMMAIRE	ii
LISTE DES ABRIVIATIONS	iii
LISTE DES FIGURES	V
LISTE DES TABLEAUX	
INTRODUCTION	
PARTIE I : GENERALITES	2
CHAPITRE I. DYNAMISME DE CLIMAT	3
I.1. DEFINITION	3
I.1.1. Le dynamisme du climat	3
I.1.2. Le gaz à effet de serre	3
I.1.3. L'effet de serre	3
I.2.LES CAUSES NATURELLES ET ANTHROPIQUES DU RECHAUFFEMENT	
CLIMATIQUE	4
I.3. DYNAMISME CLIMATIQUE ET L'EAU	5
CHAPITRE II. DELIMITATION ET REPRESENTATION DE LA ZONE D'ETUDE	6
II.1. PRESENTATION DE LA ZONE D'ETUDE	6
II.2. DELIMITATION DU BASSIN VERSANT	8
II.3. PRESENTATION DU SOUS BASSIN	9
II.3.1. Inventaire des sous bassin versant	9
II.3.2. Découpage administratif	9
II.3.3. Relation entre le district et le bassin versant	10
CHAPITRE III. CARACTERISTIQUE PHYSIQUE DE LA ZONE D'ETUDE	10
III.1. RELIEF	10
III.2. TYPE DE SOL	11
III.3. GEOLOGIE DU BASSIN VERSANT	
III.4. COUVERTURE VEGETALES	12
III.5. CLIMATOLOGIE	
III.5.1. Température	14
III.5.2. Pluviométrie	14

III.5.3. Inondation	14
III.5.4. Cyclone	14
III.5.5. Sècheresse	16
III.6. REGIME HYDROLOGIQUE	16
CHAPITRE IV. SOCIO-ECONOMIQUE	17
IV.1. MILIEU HUMAIN ET SOCIAL	17
IV.1.1. Répartition de la population	
IV.1.2. Croissance démographique et densité	17
IV.1.3. Composition ethnique	
IV.1.4. Mouvements migratoires	18
IV.2. ACTIVITES ET INFRASTRUCTURES PRESENTES DANS LA ZONE D'	ETUDE
	20
IV.2.1. Education	20
IV.2.2. Santé	
IV.2.3. Les infrastructures de communication	
IV.2.4. Agriculture	
IV.2.5. Elevage	23
PARTIE II : METHODEOLOGIE ET TRAITEMENT DE DONNEE CLIMATIQUE	25
CHAPITRE V : METHODE DE DESCENTE D'ECHELLE	26
V.1. CHOIX DE L'UTILISATION DE LA METHODE	26
V.2. LA METHODE ADVANCED DELTA CHANGE (ADC)	26
V.3. PRESENTATION DES DONNEES UTILISE	28
CHAPITRE VI : CALCUL DES APPORTS DES 18 RIVIERES ALIMENTANT LE	LAC
ALAOTRA	29
VI.1. METHODE DE STATION DE REFERENCE	29
VI.2. METHODE DE CTGREF	30
VI.3. REPARTITION MENSUELLE DES APPORTS	31
VI.2. EVAPOTRANSPIRATION	
CHAPITRE VII : CALCUL DE BESOIN EN EAU	
VII.1. INVENTAIRE DE RESSOURCE EN EAU UTILISE	32
VII.1.1. Utilisation en adduction d'eau potable (AEP)	32
VII.1.2. Utilisation hydro agricole de l'eau	33

VII.1.3. Problèmes rencontres dans la zone influant sur l'utilisation des
ressources en eau36
VII.2. EVALUATION DES BESOINS EN EAU37
VII.1.1. Besoin hydroagricole37
VII.1.2. Besoin domestiques40
PARTIE III : RESULTAT ET INTERPRETATION
CHAPITRE VIII: PRESENTATION DU RESULTAT PAR LA METHODE ADVANCED
DELTA CHANGE (ADC)43
VIII.1. TEMPERATURE43
VIII.2. PRECIPITATION47
CHAPITRE IX: RESULTAT DES APPORTS PAR LES DEUX METHODES
IX.1. APPORT MOYENNE ANNUELLE DISPONIBLE POUR LE FUTUR PROCHE 50
IX.2. APPORT MOYENNE ANNUELLE DISPONIBLE POUR LE FUTUR LOINTAIN
53
CHAPITRE X : ADEQUATION DES RESSOURCES DISPONIBLE ET DES BESOINS
56
X.1. ADEQUATION EN ANNEE MOYENNE57
X.2. ADEQUATION EN ANNEE QUINQUENNAL SECHE SELON LA MOYENNE
DES 2 METHODES64
CONCLUSIONS
BIBLIOGRAPHIE ET WEBOGRAPHIE
ANNEXESa
TABLE DES MATIERES

Titre: « EVALUATION DE LA POTENTIALITE DES RESSOURCES EN EAU FACE AU

DYNAMISME DE CLIMAT DU LAC ALAOTRA ».

Auteur: ANDRIAMBELOMASINASOLO Lovandrainy Ratovoarisoa

Tél: +261 34 04 045 46 / +261 33 46 423 77

E-mail: rlovandrainy@gmail.com

Nombre de pages : 80

Nombre de tableaux : 38

Nombre de figures: 10

RESUME

L'évaluation des ressources en eau disponibles face au changement climatique est nécessaire pour subvenir aux besoins futurs dans les domaines de l'alimentation eau potable de la population et de l'agriculture. La méthode de descente d'échelle ADC a été appliquée aux nouvelles projections du GIEC dans le cadre du projet CMIP5 pour la station d'Ambohitsilaozana. Il a été trouvé que la situation future des ressources en eau dans le bassin versant Alaotra sera un problème majeur en matière de développement durable dans cette région, vue de la situation économique de Madagascar.

Mots-clés: mise à l'échelle, méthode ADC, changement climatique, ressources en eau, région Alaotra

ABSTRACT

In order to meet the futures water needs in agriculture and for the population, the evaluation of the water resources in the context of climate change is necessary. The downscaling method, Advanced Delta Change, has been used on the IPCC's new projections under the CMIP5 project, for the station of Ambohitsilaozana. It results that the future state of water resources of Alaotra basin will be a problem against the sustainable development of this region, given Madagascar's economy.

Keywords: downscaling, ADC method, Climate Change, water resource, Alaotra region

Directeur de mémoire :

Docteur RAHARIVELOARIMIZA Samuëline, Directeur Général de la Météorologie.